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ABSTRACT
It is difficult to completely avoid system failures in recent large-
scale and complex clouds. Therefore, it is important to detect system
faults as symptoms of failures and then recover from them. Admins
often attempt fault recovery by remotely logging in to the target
system. They can also run recovery systems inside the target system
in advance. However, both methods are subject to system faults in
the target system. In this paper, we proposeXfas for recovering from
system faults by indirectly controlling OS behavior from the outside
of the target system. Xfas attempts fault recovery by rewriting
OS data in the memory of the target system and leveraging the
capabilities of the OS itself. For example, it mimics signal sending to
force termination of abnormal processes and unlocking to recover
from some kind of deadlock. As two instances of Xfas, this paper
presents VMMfas and GPUfas. We confirmed the effectiveness and
efficiency of fault recovery by Xfas.
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1 INTRODUCTION
Recently, clouds are getting larger and more complex. As a con-
sequence, it becomes difficult to avoid system failures completely,
although system developers carefully consider software quality,
system performance, and capacity. The root causes of system fail-
ures are software faults, poor performance, insufficient capacity,
configuration and operation errors, etc. For example, AWS caused
a failure due to too many threads that exceeded the limits of the
operating system (OS) and affected thousands of online services [1].
Even if perfect systems can be constructed, simple configuration
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errors can cause failures. In the case of Tokyo Stock Exchange, a
failure happened because the developer accidentally disabled the
function of automatic switchover to the secondary network storage
[20]. Once services are disrupted by a system failure, financial loss
is large for both the users and providers of services.

Therefore, it is important to detect system faults as symptoms
of failures and then recover from them. When admins detect a
system fault, they often attempt recovery from the fault by remotely
logging in to the target system. However, remote access is subject to
system faults in the target system. For example, it can be prevented
by faults in the network stack. Its performance can be affected
by available system resources. Without using remote access, fault
recovery can be made by running recovery systems inside the target
system in advance. A recovery system can be run as an OS process
or be embedded into the OS kernel. Unfortunately, it is also affected
by system faults like remote access. If these methods cannot recover
the system, a hardware reset is a last resort, but it is at high risk of
losing the data and states of the system.

In this paper, we propose Xfas for attempting fault recovery by
indirectly changing OS behavior from the outside of the target sys-
tem. For more reliable fault recovery, Xfas uses the virtual machine
monitor (VMM) to recover the system running in a virtual machine
(VM) and a GPU to recover the system in a physical machine. It
rewrites OS data in the memory of the target system from the exter-
nal recovery system using a technique extending VM introspection
(VMI) [9]. Then, it eliminates the root cause of the fault using the
capabilities of the OS itself. As examples of fault recovery, Xfas
provides pseudo signal sending and pseudo process scheduling. These
mimic sending and delivering signals to processes to force termina-
tion of the processes that cause a system fault. Xfas also provides
pseudo unlocking, which mimics releasing a spinlock to address
some kind of deadlock.

This paper presents two instances of Xfas: VMMfas and GPUfas.
VMMfas enables the recovery system running outside a VM to
manipulate the memory of the VM via the VMM. GPUfas maps the
entire main memory onto the GPU memory address space using
mapped memory in CUDA [14] and extended memory management
in Linux to run the recovery system on a GPU. Xfas transforms the
program of the recovery system to rewrite OS data transparently.
To complement these mechanisms, Xfas provides a mechanism for
in-kernel recovery support, which can be invoked to help fault re-
covery. We have implemented VMMfas and GPUfas and conducted
several experiments to show the effectiveness and efficiency of
Xfas. As a result, we confirmed that Xfas could recover from out-
of-memory by terminating a process and a deadlock by releasing a
spinlock.

This paper is an extension of our workshop paper [11]. In the
previous paper, we presented the basic concept of only GPUfas
and preliminary results. In this paper, we significantly extend our
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previous paper as follows. First, we applied the concept of GPUfas
to VMs and developed VMMfas. Second, we clarified the differences
in usable techniques between GPUfas and VMMfas. Third, we con-
ducted thorough experiments in both GPUfas and VMMfas and
compared the results between them.

The organization of this paper is as follows. Section 2 describes
current techniques used for fault recovery. Section 3 proposes Xfas,
and Section 4 presents its implementation. Section 5 shows exper-
imental results using Xfas. Section 6 describes related work, and
Section 7 concludes this paper.

2 FAULT RECOVERY
When a system fault occurs, admins often recover from it by re-
motely logging in to the target system, e.g., using SSH and VNC.
They can also use a serial console, a remote console in IPMI [10],
and a KVM switch as other means. If a VM suffers from a system
fault, admins can log in to the VM from not only a remote host but
also the host running it using the virtual network and para-virtual
interfaces such as virtio. One advantage of such remote access is
that admins can inspect the root cause of the fault and select the
best way of recovery. Instead of admins, remotely running recovery
systems can automatically perform fault recovery. However, the
biggest disadvantage is that remote access can be largely affected
by system faults. The network function in the target system can
be corrupted. Remote access servers can stop working. If the tar-
get system falls into out-of-memory, it could take long to perform
remote access due to thrashing.

To enable fault recovery without remote access, admins can run
a recovery system inside a target system in advance. This method
is more reliable in that the recovery system does not rely on the
mechanisms for remote access. As an example, a recovery system
can be run as a process inside a target system [2]. It periodically
checks the system states and performs fault recovery if it detects a
system fault. Using a process makes it easy to apply new recovery
techniques because admins can install a new recovery system easily.
However, usable recovery techniques are restricted to the process-
level ones using system calls. In addition, the recovery system inside
the target system still tends to be affected by system faults.

To address these issues, in-kernel recovery systems have been
proposed [13, 23]. This method embeds a recovery system into the
OS kernel and runs it periodically using timer interrupts. Compared
with process-level recovery systems, in-kernel recovery systems can
implement various recovery techniques. However, it is not realistic
to modify the OS kernel whenever a new recovery technique is
needed. Theoretically, this issue is addressed if a recovery system
can be dynamically loaded as a kernel module. Unfortunately, kernel
modules are less powerful because they are often restricted in terms
of available kernel variables and functions and cannot use all the
kernel capabilities. This limits implementable recovery techniques.
In addition, in-kernel recovery systems can tolerate system faults
more than process-level ones, but they still suffer from various
system faults. For example, the recovery system is not executed if
timer interrupts are not handled correctly by system faults.

If these methods cannot perform fault recovery, admins have
to reboot a target system using a hardware reset. For example,
IPMI [10] and remote power management systems can be used to
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Figure 1: The system architecture of Xfas.

perform hardware resets from remote hosts. Hardware watchdog
timers can automatically reset the system if the system does not
respond for a certain period. In the case of a VM, admins can easily
reset a VM by executing a command in the host running it. A
hardware reset can usually recover from a system fault because
most of the system faults are rare. For example, a deadlock often
depends on timing. Out-of-memory is not caused for a long time
after a system reboot.

A hardware reset is a powerful recovery method, but it is at
high risk of corrupting system states and data. If system states are
lost, it becomes difficult to identify the root cause of a system fault.
This means that the same system fault occurs again and again. In
addition, application data is lost if it exists only in memory. File
data only in the buffer cache is also lost if it is not written back
to disks. A hardware reset could corrupt filesystems and lead to
losing files. Various mechanisms have been proposed to prevent
this situation [5–7], it is difficult to salvage all the data.

3 XFAS
Xfas attempts fault recovery by indirectly controlling OS behavior
from the outside of the target system. Figure 1 illustrates the system
architecture of Xfas. The recovery system runs outside the target
system, which can run in a VM or a physical machine. When a
system fault occurs in the target system, the external recovery
system detects it and identifies its root cause using our previous
work [16], which monitors resource usage in the OS by a VMI-like
technique. Then, it rewrites OS data in the memory of the target
system using a technique extending VMI and recovers the target
system by leveraging OS capabilities. Thanks to this direct memory
rewrite, developers can implement various recovery techniques
without the limitations of processes or kernel modules. Since the
recovery system in Xfas runs as an application, it is easy to apply
new recovery techniques.

This paper presents two instances of Xfas: VMMfas and GPUfas.
VMMfas recovers the target system in a VM from a system fault
via the VMM. Since the VMM is logically isolated from a VM, the
external recovery system is not affected by a system fault in a
VM. Performance isolation, e.g., CPU limits, provided by the VMM
can prevent the external recovery system from being affected by
excessive resource consumption in the VM. The recovery system
can run using resources such as CPUs and memory preserved for
the host system. Even if the virtual network of the target VM fails,
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the external recovery system can communicate with a remote host
using the host network to rely on remote admins for recovery
decisions. We assume that cloud providers provide fault recovery
with VMMfas as a service or allow cloud users to run their own
recovery systems for VMMfas.

On the other hand, GPUfas recovers the target system running
in a physical machine from a system fault using a GPU. Although a
GPU is one hardware component, the recovery system on a GPU is
not easily affected by system faults. A GPU is physically isolated
from CPUs and main memory, on which the target system runs.
For example, CPUs cannot directly corrupt GPU memory unless
they initiate DMA accidentally. In addition, the cores and memory
dedicated to a GPU can prevent the external recovery system from
being affected by the resource shortage of the target system. The
other programmable PCIe devices such as DPUs and FPGAs could
be used for Xfas, but GPUs have an advantage in cost because
GPUfas can use inexpensive, low-end GPUs. The recovery system
on a GPU can communicate with a remote host using GPUDirect
RDMA [15] without the help of the OS. GPUfas could be used to
recover from system faults in the VMM. It is also useful for the
systems running containers, although several types of system faults
could be recovered outside containers without a GPU.

The target scope of Xfas is recovery from system faults that
do not destroy the integrity of the target system, e.g., excessive
resource consumption. To recover from such a system fault, it can
perform pseudo signal sending to abnormal processes that cause
a system fault. For example, it can prevent thrashing due to out-
of-memory by sending the KILL signal and terminating processes
that consume a large amount of memory. If it pauses processes
that consume too much CPU time by sending the STOP signal, it
can reduce the CPU load and recover system performance. Xfas
changes the process state to the same one as after a signal is sent by
rewriting information on pending signals andmimics signal sending
to a process. In addition, Xfas provides pseudo process scheduling.
This mechanism is used for controlling process execution and is
indispensable to make pseudo signal sending effective to processes
with various states. Xfas changes the state of the process scheduler
by rewriting scheduling data and mimics the adjustment of process
scheduling.

Xfas can also perform pseudo unlocking to recover from some
kind of deadlock. A deadlock by missing lock release is a typical
and frequent bug in the OS kernel. In particular, a CPU is stuck if
a spinlock is not released because it uses busy waiting. Xfas can
release such a lock and enable waiting kernel threads to proceed. It
changes the lock state by rewriting a lock variable and mimics lock
release. This recovery does not lead to data inconsistency because
Xfas just releases a lock that should be released by the kernel. Note
that pseudo unlocking cannot recover from all types of deadlocks.
In general, a consistency problem is caused by releasing one of the
locks involved in a deadlock.

However, all the functions are not implementable by rewriting
OS data. For example, the recovery system on a GPU cannot ac-
quire a lock used in the kernel because lock acquisition requires
an atomic instruction in CPUs to change the value of a lock vari-
able. In addition, there are OS functions that are too complex to
re-implement outside the target system. Even if some of the OS

functions are implementable, they could largely degrade the recov-
ery performance due to too much access to OS data in the target
system.

To address these issues, Xfas can cooperate with in-kernel re-
covery support inside the target system. The external recovery sys-
tem communicates with the mechanism embedded into the target
OS kernel and executes necessary functions inside the kernel. In
principle, the mechanism in the kernel can do anything includ-
ing hardware access. However, such in-kernel recovery support
is subject to system faults. It is necessary to consider a trade-off
between fault tolerance, ease of implementation, and performance.
It should be noted that the combination of the external recovery
system and in-kernel recovery support is more reliable than pure
in-kernel recovery systems. Only the recovery functions running
in the kernel can be affected by system faults.

Since Xfas is a first-aid system, it might achieve only temporal
fault recovery. For example, the target system might not provide
services correctly after Xfas terminates abnormal processes. In this
case, admins can save data and then reboot the system if they can
access the target system remotely, thanks to temporal fault recovery.
This can prevent important data from being lost. If even temporal
fault recovery is impossible, e.g., on a fault of in-kernel recovery
support, Xfas can send memory data to a remote host without
relying on the target OS. Admins can analyze the memory data at
the remote host and restore the data after a hardware reset.

4 IMPLEMENTATION
We have implemented Xfas using the Linux kernel 4.18.0 and LLVM
8.0 [19]. We used CUDA 10.0 [14] for GPUfas and QEMU-KVM
2.11.0 [3] for VMMfas. GPUfas could use anyOSes andGPU libraries
that support for mapping main memory onto a GPU memory ad-
dress space, although we need to overcome several implementation
issues. VMMfas can easily be applied to other virtualized systems.

4.1 Pseudo Signal Sending
When a process such as the kill command uses the signal mechanism
provided by the OS, it sends signals to a target process using the
kill system call. As another method, the kernel can send signals
directly using its function. According to the received signal, the
target process executes a pre-registered function, performs a default
action, or ignores the signal. Note that the default actions are always
performed for the KILL and STOP signals. When a signal is sent to a
process, the kernel records the signal number in the target process
and sets the flag for pending signals. When the target process is
scheduled, the kernel checks this flag. If there is a pending signal,
it delivers the signal to the process. However, the recovery system
running outside the target system cannot directly invoke the system
call or the kernel function.

To mimic this signal sending outside the target system, Xfas
directly rewrites the data structure used for the signal mechanism
in the target kernel, as illustrated in Fig. 2. First, Xfas searches for
the task_struct structure used for the target process in the kernel
memory. Then, it finds the signal bitmap (sigset_t) in the sigpend-
ing structure, which is included in task_struct. Next, it finds the
thread_info structure in task_struct and sets the TIF_SIGPENDING
flag. Later, the kernel checks this flag when it schedules that process
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Figure 2: Pseudo signal sending.

and switches the CPU mode from the kernel to user mode. If the
flag is set, the kernel handles the injected signal.

4.2 Pseudo Process Scheduling
After the kill system call or the kernel function sets the flag for
pending signals, the kernel schedules the target process so that
the sent signal is delivered to the process as early as possible. In
particular, this is mandatory if the target process is paused in the
sleeping state. Signals are delivered only when a process is sched-
uled. To schedule a process, the kernel first adds the process to the
run queue of the process scheduler. Then, it changes the process to
the runnable state. When the process scheduler selects that process
and changes it to the running state, pending signals are delivered to
the process. However, the external recovery system cannot directly
schedule the target process.

To mimic this process scheduling outside the target system, Xfas
indirectly rewrites the data structure used for the process sched-
uler in the kernel. This is done by emulating the kernel functions
of the process scheduler because scheduling data is too complex.
Currently, Xfas supports CFS, which is the most popular process
scheduler in Linux. First, it adds the sched_entity structure in
task_struct to the red-black tree in the cfs_rq structure. At this
time, it searches for the most appropriate position using the virtual
run time recorded in sched_entity. Then, it changes the process
state to TASK_RUNNING. Later, the process scheduler schedules
processes in descending order of their virtual run time.

Before manipulating the red-black tree, Xfas acquires the spin-
lock for a per-CPU run queue using pseudo locking or in-kernel
locking support. It releases the spinlock after the operation using
pseudo unlocking. During the operation, it acquires and releases
several necessary spinlocks. To reduce the number of locking and
unlocking, Xfas adds all the processes assigned to one CPU to the
red-black tree at once when it sends signals to multiple processes
at the same time. Using this optimization, it can acquire and release
the spinlock for a per-CPU run queue as many times as the number
of CPUs.

4.3 Pseudo Locking and Unlocking
Locking is used to achieve mutual exclusion in many kernel func-
tions. In particular, this paper focuses on a spinlock, which is used
when a kernel thread is unlikely to wait for a long period. A thread
waits for lock acquisition using busy waiting if another thread
acquires the spinlock. After the thread acquires the spinlock, it exe-
cutes mutually excluded code and then releases the spinlock. If it
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GPU
memory

map
DMA rewrite recovery

system

CPU GPU
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Figure 3: Rewriting main memory from a GPU.

misses this lock release, other threads have to wait for the spinlock
forever. Even the thread itself has to wait if it attempts to acquire
the spinlock again. A spinlock cannot also be acquired or released
outside the target system.

To mimic the acquisition and release of a spinlock, Xfas directly
rewrites the data structure used for a spinlock in the kernel. It
first obtains the qspinlock structure in the raw_spinlock structure,
which is included, e.g., in the rq structure and the task_struct struc-
ture. For pseudo locking, Xfas changes the value of the lock variable
to one and can acquire the spinlock if the old value is zero. If the
value is not zero, Xfas repeatedly attempts this spinlock acquisition.
Since this operation needs to be atomic, only VMMfas can support
pseudo locking by using the atomic instruction. Since a GPU can-
not use such an instruction of a CPU, GPUfas supports spinlock
acquisition using in-kernel locking support. For pseudo unlocking,
Xfas changes the value of the lock variable in it to zero. Since this
operation does not need the atomic instruction, GPUfas can also
support spinlock release using pseudo unlocking.

4.4 Manipulation of OS Data
Xfas enables developers to write the program of a recovery system
using the source code of the Linux kernel. Specifically, they can
use kernel data structures, global variables, inline functions, and
macros by including kernel header files. Xfas transforms the written
program using LLVM so that a recovery system running outside
the target system accesses the memory of the target system. Xfas
first compiles the program to LLVM intermediate representation.
Then, it searches for the load and store instructions, which are used
to read and write data from and to memory, respectively. For each
instruction, it inserts the invocation to the code for accessing the
memory of the target system just before those instructions. We have
implemented this framework by extending our previous work [16].

4.5 Memory Rewrite from a GPU
To rewrite main memory from a GPU, GPUfas uses CUDA’s mapped
memory, which is a mechanism for mapping main memory onto
the GPU memory address space. A recovery system on a GPU can
access main memory after a system fault through this advance
memory mapping. Since CUDA provides only a function for map-
ping process memory, GPUfas first maps the entire main memory
onto the address space of a helper process in the writable mode, as
illustrated in Fig. 3. However, this runs out of free memory because
the entire memory becomes in use. To avoid this issue, GPUfas
extends memory management in the Linux kernel and provides a
special device file. When a helper process maps this file, the kernel
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does not increase the reference count of each page so that the page
does not become in use. For the implementation details, see our
previous paper [16].

When the recovery system on a GPU rewrites OS data in main
memory, GPUfas translates its virtual address into a physical one
using the page tables in the target system. Then, it translates that
address into a GPU one. When the recovery system accesses the
translated GPU address, the GPU automatically transfers only ac-
cessed data from main memory to GPU memory using DMA. Since
it temporarily keeps transferred data, that data does not put pres-
sure on GPU memory. After the recovery system modifies the data,
the GPU automatically transfers the modified data back to main
memory using DMA. As a result, the kernel in the target system can
access the modified data in main memory and change its behavior.

It is not secure if intruders could rewrite the entire main memory
using the mechanism provided by GPUfas. Therefore, GPUfas pro-
vides two access restrictions. First, the kernel prevents the helper
process itself from accessing the mapped main memory by modify-
ing the page tables of that process. Even if attackers compromise
that process, they cannot read or rewrite main memory through
that process. Second, the kernel permits only privileged processes
to map main memory. Since a recovery system occupies a GPU in
GPUfas, attackers need to terminate the recovery system before
launching their malicious GPU programs. At this time, the helper
process is also terminated. As a result, GPU programs launched
by attackers cannot map main memory via new helper processes
unless they can gain administrative privileges. Note that attackers
can access main memory by installing a kernel module if they can
take administrative privileges. If attackers hijack a recovery sys-
tem running on a GPU, they could rewrite already mapped main
memory, but this is not easy.

4.6 Memory Rewrite via the VMM
To rewrite the memory of a VM via the VMM, VMMfas creates a
memory file for a VM on the host OS and maps it onto the address
space of the QEMU-KVM process, as illustrated in Fig. 4. QEMU-
KVM assigns the mapped file to a VM, instead of allocating memory
by malloc. To read and rewrite the memory of the VM, a recovery
system also maps the memory file onto its process address space in
the writable mode. When a recovery system rewrites OS data in the
memory of a VM, VMMfas first translates the virtual address of the
OS data into a physical one in the VM. For this address translation,
VMMfas obtains the address of the page tables from theCR3 register
of the VM by communicating with QEMU-KVM and then traverses
the page tables of the guest OS. Next, it translates the physical
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address in the VM into the virtual address of the recovery system.
Finally, it writes modified data to the memory address. We have
implemented this mechanism by extending our previous work [12].

4.7 In-kernel Recovery Support
To invoke in-kernel recovery support, a recovery system writes a
request to a queue allocated in the memory of the target system, as
illustrated in Fig. 5. In-kernel recovery support periodically reads
the queue using timer interrupts. For simple support such as locking,
it runs in the interrupt handler for the local APIC timer. For complex
support such as process scheduling, it runs in the callback function
registered to the Linux timer. This is because the low-level interrupt
handler is more tolerant of system faults but should not run for a
long time. Then, in-kernel recovery support executes the function
corresponding to the request and writes a response to the other
queue. The recovery system periodically reads that queue by polling
and continues its execution if in-kernel recovery support succeeds.

Currently, Xfas provides locking and process scheduling as
in-kernel recovery support. Pseudo process scheduling has been
achieved outside the target system, but we have also implemented
process scheduling as in-kernel recovery support for comparison.

5 EXPERIMENTS
We conducted several experiments to show the effectiveness of Xfas,
specifically GPUfas and VMMfas. We used four combinations of
recovery techniques, as depicted in Table 1. PSIG used only pseudo
signal sending. PSCH+PLK used pseudo process scheduling and
pseudo locking and unlocking in addition to pseudo signal sending.
This is applicable only in VMMfas because GPUfas cannot perform
pseudo locking. PSCH+KLK was similar to PSCH+PLK but used in-
kernel recovery support for acquiring a spinlock, instead of pseudo
locking. KSCH used pseudo signal sending and in-kernel recovery
support for process scheduling.

We used a PC with an Intel Core i7-9700 processor, 16 GB of
memory, a 2-TB HDD, and NVIDIA GeForce GTX 960. We ran Linux
4.18.0 and assigned 7 GB of swap space. For VMMfas, we created a
VM with 3 virtual CPUs, 2 GB of memory, and 4 GB of swap space
on top of QEMU-KVM 2.11.2. We ran Linux 4.18.0 as the guest OS.

5.1 Effectiveness of Pseudo Signal Sending
We performed pseudo signal sending to a running process for the
KILL, TERM, STOP, and CONT signals and examined the behavior
of the process. The KILL signal forced termination of the process,
whereas the TERM signal normally terminated the process. The
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Table 1: The used combination of recovery techniques.

method recovery techniques
PSIG

pseudo
signal
sending

–

PSCH+PLK pseudo
scheduling &
unlocking

pseudo
locking

PSCH+KLK
in-kernel
locking

KSCH in-kernel scheduling

Table 2: The results of pseudo signal sending in GPUfas.

signal PSIG PSCH+PLK PSCH+KLK KSCH
KILL ✓ n/a ✓ ✓
TERM ✓ n/a ✓ ✓
STOP ✓ n/a ✓
CONT n/a ✓ ✓

Table 3: The results of pseudo signal sending in VMMfas.

signal PSIG PSCH+PLK PSCH+KLK KSCH
KILL ✓ ✓ ✓ ✓
TERM ✓ ✓ ✓ ✓
STOP ✓ ✓ ✓ ✓
CONT ✓ ✓ ✓

STOP signal paused the process, whereas the CONT signal con-
tinued the paused process. For the CONT signal, we first sent the
STOP signal using the kill command to pause the process.

Table 2 shows the results of pseudo signal sending in GPUfas.
PSIG could not continue the paused process because it did not
perform process scheduling to wake up that process. In contrast,
PSCH+KLK could send all the signals successfully. Surprisingly,
KSCH could not pause the process. After GPUfas sent the STOP
signal by pseudo signal sending, the kernel paused the process
because it periodically scheduled the running process. After that,
GPUfas changed the process state to runnable again by in-kernel
scheduling support. As a result, the paused process was continued.
This is due to the time lag between pseudo signal sending and
in-kernel scheduling support. We need to fix in-kernel scheduling
support so that the process is not re-scheduled in such a case.

Table 3 shows the results of pseudo signal sending in VMMfas.
In addition to PSCH+KLK, PSCH+PLK could send all the signals
successfully. This means that VMMfas can completely achieve sig-
nal sending without any help of in-kernel recovery support, thanks
to enabling pseudo locking. Unlike in GPUfas, KSCH could pause
the process as expected. This is because VMMfas was faster than
GPUfas and the time lag between pseudo signal sending and in-
kernel scheduling support decreased. VMMfas could change the
process state to runnable by in-kernel scheduling support before
the kernel re-scheduled the running process.
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Figure 6: The average time to terminate running processes
in GPUfas.

5.2 Signal Performance in GPUfas
We examined the performance of pseudo signal sending in GPUfas.
We sent the KILL signals to various numbers of processes and
measured the time until all the processes were terminated.

First, we sent the signals to running processes that performed
busy waiting. The average recovery time of 10 attempts is shown
in Fig. 6(a). For GPUfas, it was proportional to the number of pro-
cesses, and the standard deviation was relatively small. PSIG could
terminate all the processes successfully without process scheduling
and achieve the fastest recovery. PSCH+KLK performed pseudo
process scheduling as well, but the recovery time increased only by
8.5-13.5 ms because all the processes were runnable and were not
actually re-scheduled by pseudo process scheduling. In contrast,
KSCH significantly increased the recovery time due to the over-
head of invoking in-kernel scheduling support from a GPU. For
comparison, we sent the signals using the process-level recovery
system, which issued the kill system call inside a target system.
The average recovery time was not proportional to the number of
processes, and the standard deviation was large. GPUfas was often
faster than the process-level recovery system.

Figure 6(b) shows the breakdown of the recovery time for ter-
minating 1000 processes. The recovery time consists of the time to
send the KILL signals to all the processes from a GPU (signal time)
and the time to wait for the termination of all the processes in a
GPU (wait time). When we used PSIG, the ratio of the signal time
was relatively small because pseudo signal sending is lightweight.
When we sent signals to fewer processes, the ratio was smaller.
This is because fewer processes were terminated before GPUfas
completed sending signals. In PSCH+KLK and KSCH, in contrast,
the signal time always occupied a larger portion.

Next, we sent the signals to processes paused by a long sleep.
Figure 7(a) shows the average recovery time with a very small
standard deviation. PSIG could not terminate any processes because
the paused processes could not handle sent signals without process
scheduling. Unlike the results for running processes, PSCH+KLK
took much longer than KSCH. This is because many invocations
of in-kernel locking support suffered from large overhead during
pseudo process scheduling. As shown in Fig. 7(b), PSCH+KLK spent
most of the time performing pseudo process scheduling, unlike
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Figure 7: The average time to terminate paused processes in
GPUfas.
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Figure 8: The average time to terminate intermittent pro-
cesses in GPUfas.

KSCH. In KSCH, in-kernel scheduling support also suffered from
invocation overhead, but it was invoked only once per process. If
the number of processes was less than 300, KSCH was faster than
the process-level recovery system. Note that KSCH is less reliable
due to running complex scheduling code in the target kernel.

Finally, we sent the signals to intermittent processes that ran
every 10 ms. Figure 8(a) shows the average recovery time. For PSIG
and KSCH, the results were almost the same as those for running
processes in Fig. 6(a). However, the recovery time in PSCH+KLK
varied largely, and the standard deviation was quite large. This
is because an intermittent process has the characteristics of both
running and paused processes. If the target process was running
during pseudo process scheduling, it was not re-scheduled, so that
the overhead of pseudo process scheduling was small. Otherwise,
the process was re-scheduled with a large overhead. Nevertheless,
the breakdown of the recovery time was similar to that for running
processes, as shown in Fig. 8(b). Surprisingly, GPUfas was always
faster than the process-level recovery system in this case.

5.3 Signal Performance in VMMfas
In VMMfas, we also examined the performance of pseudo signal
sending. First, we sent the KILL signals to various numbers of
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Figure 9: The median time to terminate running processes
in VMMfas.
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Figure 10: The distribution of the recovery time for 1000
running processes in VMMfas.

processes running in a VM via the VMM. Figure 9(a) shows the
median recovery time because the average was not stable enough.
The recovery time was proportional to the number of processes.
Unlike GPUfas, all the methods including PSCH+PLK could termi-
nate processes in almost the same time. To be exact, PSCH+PLK,
PSCH+KLK, and KSCH were 4.3%, 19%, and 1.7% slower than PSIG
on average, respectively. Compared with GPUfas, VMMfas was 1.5-
2.7x faster for PSIG, thanks to a CPU core much faster than a GPU
core. For PSCH+KLK, it was 2-3.6x faster because more complex
process scheduling could be executed in a faster CPU core. For
KSCH, it was 4-4.9x faster due to much less overhead of invoking
in-kernel scheduling support for a VM.

Figure 9(b) shows the breakdown of the recovery time. Unlike
GPUfas, PSIG, PSCH+PLK, and KSCH spent most of the time wait-
ing for the termination of processes. In contrast, PSCH+KLK needed
a longer signal time because it invoked in-kernel locking support
many times. This means that the overhead of communicating with
in-kernel recovery support is still large even in VMMfas.

As shown in Fig. 10, the recovery time was basically stable,
but there were several extreme outliers. It sometimes took much
long time to terminate processes, particularly when the number of
processes increased. One of the reasons is that the invocation time
of in-kernel recovery support was largely affected by virtualization.
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Figure 11: The median time to terminate paused processes
in VMMfas.
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Figure 12: The distribution of the recovery time for 1000
paused processes in VMMfas.

Since PSCH+PLK was the most stable for any number of processes,
it is the best for running processes.

Next, we sent the signals to processes paused in a VM. Fig-
ure 11(a) shows the median recovery time, and Fig. 12 shows the dis-
tribution of the recovery time. Like GPUfas, KSCH was the fastest
and the most stable. In contrast, the recovery time in PSCH+PLK
and PSCH+KLK was not proportional to the number of processes,
and the variance was very large. This is probably due to virtualiza-
tion, e.g., VM scheduling, but the details are under investigation.
For 1000 processes, the recovery time was 2.4x and 4.8x faster than
GPUfas in PSCH+KLK and KSCH, respectively. For PSCH+KLK,
the ratio of the signal time was very large due to the frequent
invocation of in-kernel locking support, as shown in Fig. 11(b).

Finally, we sent the signals to processes that intermittently ran
in a VM. Figure 13(a) shows the median recovery time. It was basi-
cally proportional to the number of processes. PSIG, PSCH+KLK,
and KSCH could terminate processes in almost the same time.
To be exact, PSCH+KLK was 8.2% slower than PSIG on average,
and KSCH was 11% faster. However, PSCH+PLK was 57% slower
than PSIG. This is because PSCH+PLK was largely affected by
pseudo process scheduling if the target process was not running.
In fact, Fig. 13(b) shows that PSCH+PLK spent a relatively long
time executing pseudo process scheduling. This is largely different
from the breakdown for running and paused processes. In contrast,
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Figure 13: The median time to terminate intermittent pro-
cesses in VMMfas.
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Figure 14: The distribution of the recovery time for 1000
intermittent processes in VMMfas.

PSCH+KLK needed a shorter signal time than that for the other
types of processes. This is probably the reason why PSCH+KLK
was faster than PSCH+PLK. As shown in Fig. 14, PSCH+KLK had
almost no outliers.

5.4 Recovery from Out-of-memory
To show the recoverability from a real system fault, we made the
target system use up physical memory. We ran one process that
allocated a large amount of memory and sequentially wrote data
to the memory to continuously cause swapping. For GPUfas, the
process allocated 19 GB of virtual memory in the physical machine
with 16 GB of memory. When we attempted remote login to this
host, it took about 20x longer due to thrashing. For VMMfas, the
process allocated 5 GB of virtual memory in the VM with 2 GB
of memory. When we attempted remote login to this VM, it took
about 15x longer.

In this experiment, the recovery system detected a system fault
if the amount of memory consumption exceeded 80% and sent
the KILL signal to the target process for recovery. In addition to
GPUfas and VMMfas, we used a process-level recovery system and
an in-kernel recovery system, which are described in Section 2. The
in-kernel recovery system invoked the kernel function for signal
sending.
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Figure 15: The recovery time from out-of-memory.

Figure 15(a) shows the recovery time from out-of-memory in
GPUfas. PSIG was the fastest and the most stable. PSCH+KLK
slightly increased the average due to pseudo process scheduling,
but it was still stable. In KSCH, in contrast, the average was 100
ms longer than in PSCH+KLK. This is due to the invocation of in-
kernel scheduling support from a GPU and the impact of continuous
swapping on the process scheduler in the kernel. This impact also
made the variance of the recovery time much larger. Contrary to
our expectation, the process-level recovery system was not largely
affected by frequent swapping, but it resulted in lower stability.
Surprisingly, the in-kernel recovery system was worst in both the
average and stability. One of the reasons is the large impact of
swapping on the in-kernel scheduler like KSCH.

Figure 15(b) shows the recovery time in VMMfas. PSCH+PLK
was the fastest among the four methods in VMMfas. Its median
recovery time was 2x faster than that of the fastest method in
GPUfas. Unlike GPUfas, however, no methods were so stable. The
process-level recovery system was the slowest for a VM. In contrast,
the in-kernel recovery system was the fastest and the most stable,
although there were several outliers. This is completely different
from the results in the physical machine. The reason is currently
unclear.

5.5 Recovery from a Deadlock
As another real system fault, we made the kernel in the target OS
cause a deadlock involving all the CPUs. We loaded the kernel
module in which all the threads attempted to acquire the same
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Figure 16: The recovery time from a deadlock.

spinlock without disabling interrupts. This module caused a dead-
lock by failing to release the acquired spinlock. In this experiment,
the recovery system released the spinlock using pseudo unlocking
after the deadlock occurred. For comparison, we used two in-kernel
recovery systems. One released the spinlock in a callback function
registered to the Linux timer. The other did in the interrupt handler
for the local APIC timer. We did not use a process-level recovery
system because the deadlock in the kernel prevented that process
from running.

Figure 16 shows the recovery time from the deadlock. We con-
firmed that both GPUfas and VMMfas could recover from this type
of deadlock. The reason why the high-level Linux timer failed to
recover is that the kernel thread used by the Linux timer was not
scheduled due to no idle CPU. The low-level interrupt handler suc-
ceeded in fault recovery because it was invoked regardless of the
deadlock. GPUfas was 164 𝜇s slower than the in-kernel recovery
system. In contrast, VMMfas was only 17 𝜇s slower and 29x faster
than GPUfas. In both cases, Xfas was comparable to the in-kernel
recovery system.

6 RELATEDWORK
The Linux kernel provides several features for fault recovery such
as a kernel oops and the out-of-memory (OOM) killer. A kernel
oops terminates the process that causes a system fault when the
kernel detects the fault and enables the execution of the system
to be continued. However, the kernel state is not always restored
to the normal one [22]. The OOM killer forces termination of the
process that consumes excessive memory when the system causes
out-of-memory. Whereas it does not consider factors except for the
consumption of memory and swap space, Xfas can select processes
more flexibly on a system fault.

SHFH [23] detects various system hangs and recovers from the
faults. It provides three recovery techniques. One is to force ter-
mination of the process or thread that causes a system fault. The
other two are to send a non-maskable interrupt (NMI) to a stalled
CPU and to reboot the system. SHFH detects a system fault using
both the process and the kernel and then recovers from the fault
in the kernel. Therefore, it is subject to a kernel-level system fault
and is less reliable than Xfas, which runs a recovery system outside
the target system.
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Backdoors [4] performs fault recovery by modifying OS data
using RDMA from a remote host. As an example, it mimics sending
the KILL signal to a process like Xfas. However, it is necessary to
modify the OS so that a remote host can access the process table
using RDMA. In addition, Backdoors needs to permit direct access
to the kernel memory from a remote host. This can introduce a new
attack surface to the target system. In contrast, Xfas is more secure
because the recovery system can execute only recovery functions
fixed in advance.

VMI [9] is a well-known technique for obtaining the internal
state of a VM from the outside of it. It is used mainly for security
but is also applied to fault detection [17, 18]. However, there are
few systems to modify the internal state. EXTERIOR [8] enables
the system in a VM to be recovered when the system is attacked. It
prepares a different VM that runs the same OS kernel as the target
VM and seamlessly reflects memory updates by the commands exe-
cuted in this VM to the target VM. For example, it can terminate
processes using the kill command and unload kernel modules us-
ing the rmmod command. EXTERIOR can be used to run reliable
process-level recovery systems for VMs. However, usable recov-
ery techniques are restricted to process-level ones, as described
in Section 2. Xfas can use more powerful kernel-level recovery
techniques. In addition, it can be applied to not only VMs but also
physical machines by using a GPU.

Otherworld [7] microreboots the OS kernel when a kernel-level
system fault occurs. Unlike a normal reboot, a microreboot reboots
the system without corrupting the states of running applications
on top of the kernel. After a microreboot, Otherworld restores the
memory of applications, opened files, and the states of the other
resources. This mechanism is orthogonal to Xfas. It can be used to
minimize the impact of a reboot when Xfas cannot recover from a
system fault.

A phase-based reboot [21] can reduce the recovery time from a
system fault using a VM. It divides the boot sequence into three
phases and saves the system state for each phase. Upon fault recov-
ery, it restores the system state of the most appropriate phase to
reduce the reboot time. However, the system state that is not saved
before a system fault is lost. Also, only the system running in a VM
is recoverable. Xfas also supports the recovery of the system in a
physical machine.

7 CONCLUSION
This paper proposed Xfas for enabling fault recovery by running a
recovery system outside the target system and indirectly controlling
OS behavior. Xfas rewrites OS data in memory and attempts to
recover from a system fault by leveraging OS capabilities. Currently,
Xfas provides recovery techniques called pseudo signal sending,
pseudo process scheduling, and pseudo locking and unlocking. It
can cooperate with in-kernel recovery support if necessary. We
have implemented two instances of Xfas and confirmed that Xfas
could recover from several system faults in a short period.

One of our future work is to minimize pseudo process scheduling,
although we implemented it by emulating kernel functions. In
addition, we need to recover from various types of system faults, e.g.,
a deadlock due to spinlocks with interrupts disabled. In this case,
we could use the NMI instead of timer interrupts. Another direction

is to use remote hosts with GPUDirect RDMA for advanced fault
recovery.
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