Memory-virtualizing and -devirtualizing VM Migration
with Private Virtual Memory

Yuji Muraoka
Kyushu Institute of Technology
murayu@ksl.ci.kyutech.ac.jp

Abstract—Recently, Infrastructure-as-a-Service clouds provide
virtual machines (VMs) with a large amount of memory.
Such large-memory VMs can be migrated to other hosts,
but it is costly to always preserve hosts with sufficient mem-
ory as the destinations of VM migration. Instead, memory-
virtualizing VM migration using virtual memory is possible, but
the performance of VM migration and migrated VMs largely
degrades because traditional virtual memory causes excessive
paging during and after VM migration. This paper proposes
VMemDirect, which achieves efficient memory-virtualizing VM
migration. VMemDirect provides private virtual memory with
private swap space on an NVMe SSD for each VM. Then, it
directly transfers the memory data of a VM to either physical
memory or private swap space to completely avoid paging
during VM migration. In addition, VMemDirect provides
efficient memory-devirtualizing VM migration for VMs running
on private virtual memory. To optimize the performance of
migrated VMs, it uses a more accurate and efficient LRU
approximation using chunk queues and performs asynchronous
paging. We showed that VMemDirect dramatically improved
the performance of VM migration and migrated VMs using
large VMs.

1. Introduction

Recently, Infrastructure-as-a-Service (IaaS) clouds pro-
vide VMs with a large amount of memory. For example,
VMs provided by Amazon EC2 have up to 24 TB of
memory. When a host running a VM is maintained, the
execution of the VM can be continued by migrating the VM
to another host in advance. VM migration transfers the state
of a VM, e.g., virtual CPUs, memory, and virtual devices,
and resumes the VM at the destination host. Therefore, VM
migration requires a large host with sufficient memory that
can accommodate the entire memory of a VM. However, it
is not cost-efficient to always preserve such large hosts as
the destinations of occasional VM migration. In particular,
private clouds may not afford to prepare a sufficient number
of large hosts.

Even if there is no such destination host, memory-
virtualizing VM migration is possible by using virtual mem-
ory. In this method, part of the memory of a migrated VM
is stored in swap space. When a VM requires memory data

Kenichi Kourai
Kyushu Institute of Technology
kourai@csn.kyutech.ac.jp

in swap space, that data is paged in, while unnecessary
memory data is paged out. However, traditional virtual
memory is not suitable for VM migration. Since frequent
paging occurs during VM migration, the performance of
VM migration degrades largely. After the migration, the
execution performance of the VM is also largely affected by
paging because necessary memory data is often paged out.
Split migration [1] using multiple hosts has been proposed
to address these issues, but it is costly and is subject to host
and network failures.

This paper proposes VMemDirect for efficient memory-
virtualizing VM migration. VMemDirect provides private
virtual memory, which consists of a fixed amount of physical
memory and private swap space created on a fast and
inexpensive NVMe SSD, for each VM. Then, it directly
transfers the memory data of a VM to either physical
memory or private swap space. Since this direct memory
transfer does not cause any paging, performance degradation
can be avoided. Using memory access prediction of a VM,
VMemDirect transfers likely accessed memory data to phys-
ical memory and reduces paging after VM migration. Also,
VMemDirect supports efficient memory-devirtualizing VM
migration, which migrates a VM running on private virtual
memory to the destination host with sufficient memory.

We have implemented VMemDirect in KVM. Private
swap space is created using a sparse file to enable direct
memory transfer. Upon VM migration, VMemDirect divides
the memory of a VM into two by the likelihood of future
memory access. For memory access prediction, VMem-
Direct performs least-recently-used (LRU) management ac-
curately and efficiently using the chunk queues. After VM
migration, it performs asynchronous paging to handle page-
ins as fast as possible. Our experimental results show that
VMemDirect could dramatically improve the performance
of VM migration and migrated VMs. It was also shown
that VMemDirect often outperformed split migration.

This paper is an extension of our workshop paper [2].
First, we have implemented our memory-virtualizing VM
migration with various optimizations. Second, we have
designed and implemented efficient memory-devirtualizing
VM migration. Third, we conducted thorough experiments
using large VMs with up to 240 GB of memory and com-
pared VMemDirect with split migration.

The organization of this paper is as follows. Section 2

describes issues on traditional memory-virtualizing VM mi-
gration. Section 3 proposes VMemDirect, and Section 4
describes its implementation. Section 5 shows experimental
results. Section 6 discusses related work, and Section 7
concludes this paper.

2. Migrating Large-memory VMs

If a destination host does not have sufficient memory,
memory-virtualizing VM migration is possible. It leverages
virtual memory at the destination host. It can transparently
store part of the memory of a VM in swap space on
secondary storage and use a necessary amount of memory.
When the VM requires memory data in swap space, a page-
in is performed and the data is moved to physical memory.
In exchange for this, a page-out is performed and unlikely
accessed data in physical memory is moved to swap space.

However, it is pointed out that traditional virtual memory
is not suitable for VM migration [1]. The migration time
increases due to excessive paging. VM migration first trans-
fers the entire memory data of a VM to physical memory
at the destination host. After physical memory becomes
full, the following transfers always cause page-outs to store
the received data in physical memory. Also, retransfers of
memory data updated during VM migration often cause
paging. If memory data to be updated exists in swap space,
VM migration has to page in that data and then update it.

The downtime also increases due to frequent paging. In
the final phase, VM migration stops the VM and transfers
the rest of the state consistently. If the device emulator for
a VM uses the same virtual memory as the VM at the
destination host, its memory is usually paged out during VM
migration. When the device emulator restores the state of
virtual devices, many page-ins occur. After VM migration,
read-only memory data can be stored in swap space even if
it is frequently accessed. Since such data is transferred only
once, it is often paged out by following memory transfers.
It can cause page-ins later.

To counteract these problems, split migration [1] has
been proposed. It divides the memory of a VM and transfers
the memory fragments to smaller hosts. It transfers likely
accessed memory data to the main host and the rest of
the memory data to sub-hosts. If the VM requires memory
data in sub-hosts after VM migration, the data is transferred
to the main host by remote paging. Since no paging oc-
curs during VM migration, split migration can improve the
migration performance. Also, it can increase the execution
performance of the migrated VM because necessary memory
data is transferred to the main host in advance.

However, split migration is more costly than memory-
virtualizing VM migration. It requires one or more sub-
hosts in addition to the main host. For efficient remote
paging, a dedicated high-speed network such as InfiniBand
is necessary [3]. NICs and switches for such a network are
expensive. In addition, migrated VMs are subject to host and
network failures because they run across multiple hosts. If
a failure occurs in only one of the hosts or the network, a
VM cannot continue to run.

source host destination host

private virtual memory swap
| space
! private |
VM’s ' swap space | 8
3 1
memory E’ VM's | . > ! '
transfer | | | emulator

‘ _______________________
[

Figure 1. Memory-virtualizing VM migration using private virtual memory.

Therefore, we revisit memory-virtualizing VM migration
in this paper. Recently, NVMe SSDs are widely used and be-
come less expensive. Using NVMe SSDs as swap space, the
performance of memory-virtualizing VM migration could
be improved. Although too many writes to swap space
shrink the lifespan of NVMe SSDs, migrated VMs usually
do not cause excessive paging thanks to memory access
locality. However, only using NVMe SSDs cannot elimi-
nate the above-mentioned overhead completely. To achieve
the performance comparable to split migration, we need
special-purpose memory management for VM migration and
migrated VMs.

3. VMemDirect

This paper proposes VMemDirect for efficient memory-
virtualizing VM migration. VMemDirect uses private virtual
memory instead of system-wide virtual memory at the des-
tination host, as illustrated in Fig. 1. VMemDirect assigns
a fixed amount of memory to private virtual memory when
starting VM migration. It also creates private swap space
on a fast and inexpensive NVMe SSD for private virtual
memory. Thanks to virtual private memory, VMemDirect
can prevent performance degradation due to the paging
of the memory of the device emulator at the destination
host. Since the device emulator runs outside private virtual
memory, the memory of the device emulator is not paged
out by memory transfers during VM migration.

Upon VM migration, VMemDirect directly transfers the
memory data of a VM to either physical memory or private
swap space instead of relying on paging. At the source host,
VMemDirect divides the memory of a VM into two by
determining the locations where memory data is stored. At
the destination host, it writes memory data to the specified
locations. This direct memory transfer can prevent paging
from occurring during VM migration. No data in physical
memory is paged out, while no memory data in private swap
space is paged in. When VMemDirect retransfers memory
data, it directly updates data in either physical memory or
private swap space. Since the blocks in private swap space
are mapped onto the memory chunks in the VM one-to-one,
it is easy to find the corresponding blocks.

In addition to memory-virtualizing VM migration,
VMemDirect supports efficient memory-devirtualizing VM
migration. This migration method migrates a VM running on
private virtual memory to the destination host with sufficient
memory. VMemDirect directly transfers memory data from

both physical memory and private swap space to physical
memory in the destination host. It does not perform paging
to transfer memory data in private swap space. Even if the
running VM causes paging during VM migration, VMem-
Direct transfers that memory data correctly. VMemDirect
can perform both memory-devirtualization and memory-
virtualization at the same time. It directly reads memory
data from both physical memory and private swap space at
the source host. Then, it transfers the data to either physical
memory or private swap space at the destination host.

To improve the performance of migrated VMs, VMem-
Direct predicts the future memory access of a VM using
the LRU algorithm. Like the previous work [1], it uses
the aging algorithm as an LRU approximation. Since the
previous work uses only an 8-bit memory access history for
each memory chunk, the accuracy of LRU decreases if a
large amount of memory access is done in a short period.
For more accuracy, VMemDirect uses chunk queues, which
manage the access recency of memory chunks more rigidly.
The chunk queues also allow VMemDirect to select a victim
memory chunk more rapidly. In addition, VMemDirect per-
forms page-ins and page-outs asynchronously. This enables
VMemDirect to handle page-in requests as fast as possible.

4. Implementation

We have implemented VMemDirect in QEMU-KVM
2.11.2 and Linux 4.18.

4.1. Private Swap Space

For private swap space, VMemDirect creates a swap file
on an NVMe SSD. This swap file has the same size as
private virtual memory and has one-to-one mapping onto the
memory of a VM. Memory data of a VM is stored in either
physical memory or the swap file. To save space on storage,
the swap file is created as a sparse file, which contains
memory data only in necessary file blocks. The other blocks
have no memory data and are called holes. When memory
data is moved to physical memory, VMemDirect changes
the corresponding blocks of the swap file to holes.

VMembDirect accesses the swap file using direct /O
so that the page cache is not allocated for its file blocks.
Direct I/O enables data to be directly read from and written
to storage without storing it in the page cache managed
by system-wide virtual memory. To use the bandwidth of
NVMe SSDs as much as possible, VMemDirect accesses
the swap file by the 256-page memory chunk.

4.2. Chunk Queues for LRU Management

VMemDirect uses 2™ queues called chunk queues to
achieve an accurate and efficient aging algorithm. As shown
in Fig. 2, the first queue manages least recently used memory
chunks, while the last queue manages most recently used
ones. VMemDirect uses 256 queues (' = 8) in the current
implementation. At first, all memory chunks are added to

&, least recently used
page-out «------- '

[1 e - -0

L 2 | =0 | accessed
129 | | |

aging

| 256 |~ -—D

W most recently used

<| page-in

Figure 2. The chunk queues for efficient LRU management.

the first queue. The head of each queue is a less recently
used memory chunk, while the tail is a more recently used
one.

VMemDirect periodically updates the chunk queues ac-
cording to the access bits in the extended page tables (EPT).
If the access bit for a memory chunk is set, VMemDirect
moves that memory chunk in the ¢-th queue to the tail of the
(i + 2m~1)-th queue. After a certain period, VMemDirect
compresses 2™ queues into the former 2™~! queues for
aging. That is, it creates a new i-th queue from the (2i—1)-
th and 2i-th queues. Then, it makes the latter 2! queues
empty.

Upon a page-out, VMemDirect can find a victim mem-
ory chunk in O(2™). It searches for a non-empty queue from
the first queue and just dequeues a memory chunk from the
head of that queue. Upon a page-in, VMemDirect appends
a memory chunk to the tail of the last queue in O(1). For
memory division on VM migration, VMemDirect scans the
chunk queues from the head of the first queue. Then, it
marks the specified number of memory chunks to send to
private swap space and the rest of the memory chunks to be
sent to physical memory.

4.3. Asynchronous Paging

VMemDirect performs asynchronous paging to handle
page-ins as fast as possible. When a VM accesses a non-
existent memory page, the page-in thread reads memory
data from the swap file and writes it to the memory pages
allocated to the VM. After that, it adds a page-out request
to the paging queue and can handle the subsequent page-in
request immediately. Unlike synchronous paging, the page-
in thread does not wait for the completion of page-outs. It
does not need to delete the corresponding blocks from the
swap file.

When the page-out thread asynchronously receives that
request via the paging queue, it selects a victim memory
chunk. To prevent the conflict with page-ins performed in
parallel, it acquires a lock for that memory chunk and
then performs page-outs. In addition, it deletes the blocks
corresponding to the paged-in memory chunk from the swap
file and makes holes asynchronously.

As a further optimization, VMemDirect can perform not
only page-outs but also most of the page-ins in each memory

TABLE 1. EXPERIMENTAL SETUP.

source host

destination (main) host

destination sub-host

CPU Intel Xeon Silver 4110 x2
Memory 2666 MT/s RDIMM 256 GB
NIC Intel X550-T2 (10 GbE)
SSD -

AMD EPYC 7262 x1

2666 MT/s RDIMM 128 GB
Broadcom 57416 (10 GbE)
Samsung 970 PRO NVMe SSD 1 TB -

Intel Xeon Silver 4110 x2
2666 MT/s RDIMM 128 GB
Intel X550-T2 (10 GbE)

chunk asynchronously. The page-in thread handles only a
faulting page. Then, it adds a request to the paging queue.
As a result, it can handle the subsequent page-in without
waiting for page-ins of the rest of the pages in the same
memory chunk. Later, the page-out thread performs the rest
of the page-ins and page-outs asynchronously.

5. Experiments

We conducted experiments to examine the performance
of VM migration and migrated VMs in VMemDirect. For
comparison, we examined the performance of ideal migra-
tion, naive migration, and split migration [1]. The ideal
migration migrated a VM to the destination host with suf-
ficient memory. The naive migration performed memory-
virtualizing and -devirtualizing VM migration using tradi-
tional virtual memory. We applied the efficient LRU man-
agement in VMemDirect to split migration as well.

We used three hosts shown in Table 1. When we per-
formed the ideal migration, we attached an extra 128 GB
of RDIMMs to the destination host to accommodate a VM
with 240 GB of memory. These hosts were connected using
a 10 Gigabit Ethernet (GbE) switch. We ran a VM with
four virtual CPUs and 2-240 GB of memory. We used Linux
4.18.17 as the host and guest operating systems and QEMU-
KVM 2.11.2 as the device emulator. For VMemDirect, we
configured the size of physical memory assigned to private
virtual memory to half of the memory size of the VM. For
the naive migration, we adjusted the size of free memory
in the host to half of the memory size of the VM. For split
migration, we equally divided the memory of the VM into
two.

5.1. Performance of Migrating an Idle VM

To examine migration performance, we first measured
the time needed to migrate an idle VM. As shown in
Fig. 3(a), VMemDirect was as fast as the ideal migration,
faster than the naive migration, and much faster than split
migration. To compare the migration time in detail, we show
the normalized migration time in Fig. 3(b). VMemDirect
was 8.3-62% faster than the naive migration. It could trans-
fer memory data directly to private swap space and suppress
paging. Compared with split migration, the performance
improvement was 13-30%. This is probably because the
CPU performance of the sub-host was lower than that of
the destination host used for VMemDirect. The performance
degradation from the ideal migration was only 0.2-6.9%.

Next, we measured the downtime during VM migration.
As shown in Fig. 4, VMemDirect could reduce the downtime

400 T T 25
- ideal g W ideal
S - naive = o0k B naive i
$300 = VMembDirect 5 s~ B VMemDirect
o -u split 5 W split
E 518
'é 200 1 E o
g — 8
5 P _ 1 2
g 100 = g 05
S
I I I I <
0O 50 100 150 200 250 00 2 120 240

memory size (GB)

memory size (GB)

(a) Migration time (b) Migration time (ratio)

Figure 3. The migration time of an idle VM.

2.0
M ideal
H naive

1.5 Il VMembDirect
| split

downtime (sec)

2 120 240
memory size (GB)

Figure 4. The downtime of an idle VM.

by 454-896 ms, compared with the naive migration. In
the naive migration, many page-ins occurred when virtual
devices were resumed in the final phase. In VMemDirect, in
contrast, paging was suppressed because the memory of the
device emulator was not managed by private virtual memory.
The downtime in VMemDirect was comparable to those in
split migration and the ideal migration.

5.2. Performance of Migrating an Active VM

To examine how memory updates affect migration per-
formance, we measured the time needed to migrate an active
VM. We assigned 120 GB of memory to a VM and ran the
benchmark that modified 60 GB of memory in it. As shown
in Fig. 5(a), the migration time of the active VM was longer
than that of the idle VM in any type of migration. However,
the migration time was 2.2x longer in the naive migration,
while that was 1.5x longer in VMemDirect. As a result,
VMemDirect was 58% faster than the naive migration. This
means that VMemDirect could successfully transfer updated
memory to physical memory and reduce paging.

For split migration and the ideal migration, the migration
time of the active VM was also 1.5x longer than that of
the idle VM. The increase in migration time was almost the
same between VMemDirect and split migration, but VMem-

N
o
o

H idle VM M idle VM
) W active VM 1.0f W active VM
§ 300
()
£
< 200 1
il
S
21001 1
€

ideal naive VMem split ideal naive VMem split

Direct Direct

(a) Migration time (b) Downtime

Figure 5. The migration performance of an active VM.

1200
M ideal W ideal

5 1000f @ naive] 127 | naive]
2 B VMemDirect S 1.0H E VMembDirect]
o 800f 1 &
£ o 0.8 b
<= 600 1 £
o kS 0.6 b
® F 1 2
-% 400 8 oaf]
€ 200}] 02}]

0 0.0

(a) Migration time (b) Downtime

Figure 6. The performance of memory-devirtualizing VM migration.

Direct was 11% faster than split migration. Compared with
the ideal migration, VMemDirect was only 4.1% slower.

Next, we measured the downtime during the migration.
As shown in Fig. 5(b), the downtime increased by 82 ms
in the naive migration because retransferred memory data
caused paging in the final phase. In VMemDirect, the down-
time increased only by 11 ms. As a result, the downtime
difference was 545 ms. In contrast, split migration and the
ideal migration decreased the downtime by 23 ms and 78
ms, respectively.

5.3. Performance of Devirtualizing Migration

We measured the time needed for memory-devirtualizing
VM migration when using an idle VM with 120 GB of
memory. As shown in Fig. 6(a), the naive migration took
much longer because paging occurred to transfer memory
data in swap space. VMemDirect was 2.6x faster than
the naive migration thanks to direct memory transfer from
private swap space. It was only 17% slower than the ideal
migration. Fig. 6(b) shows the downtime during memory-
devirtualizing VM migration. The downtime in the naive
migration was much longer because paging occurred at the
source host in the final phase. VMemDirect could reduce
the downtime by 431 ms. This downtime was only 10 ms
longer than that in the ideal migration.

5.4. Performance of Private Virtual Memory

We examined the performance of private virtual memory
after VM migration. First, we migrated a VM with 120
GB of memory and ran a memory benchmark in the VM.
This benchmark caused excessive paging because the total

(o))
o

naive

VMembDirect (async out)
VMembDirect (async infout)
split

N
o
T
EEEE

w
o

n
o

throughput (GB/s)

-
o

0

Figure 7. The execution time of the memory benchmark.

30
o o0 g-8-0 = ==

251 b
o 1
3 207 b
2 |
o 15f 9
g 10 —o— ideal
[= —— naive

5 —a— VMembDirect (async in/out)

—u— split
00 50 100 150 200

elapsed time (sec)

Figure 8. The memcached performance with YCSB.

working-set size exceeded the size of the physical memory
assigned to private virtual memory. As shown in Fig. 7,
VMembDirect was 3.2x faster than the naive migration. When
VMemDirect performed not only page-outs but also page-
ins asynchronously, the performance was degraded by 20%.
This is because the benchmark accessed memory sequen-
tially and asynchronous page-ins resulted in delay. The per-
formance after split migration was worse than VMemDirect
due to the network overhead in remote paging.

Next, we ran memcached in a VM and migrated the VM.
We assigned 12 GB of memory to the VM and allocated 5
GB of memory to memcached. The total working-set size
was less than the size of the physical memory assigned to
private virtual memory. We measured the performance of
memcached with the YCSB benchmark. As shown in Fig. 8,
the performance after the naive migration was restored grad-
ually. This is because memory data used by memcached was
stored in swap space. In contrast, VMemDirect could restore
as high performance as after the ideal migration only in 10
seconds. This is thanks to memory access prediction. When
we used split migration, it took longer than VMemDirect,
and the performance degradation was 7% on average.

5.5. Performance of LRU Management

We compared the performance of the LRU management
in VMemDirect with that in S-memV [1] developed for split
migration. We measured the time for a page-out decision, a
VM’s memory division, and the update of LRU management
data. To examine the scalability over the size of physical
memory, we emulated these three functions. Fig. 9(a) shows
the time for a page-out decision, and Fig. 9(b) magnifies
only the results for VMemDirect. The decision time in
VMemDirect was much shorter than in S-memV. Also, the
scalability in VMemDirect was higher because the decision

12 T 1.0 T T T
-~ S-memV
10f] == VMemDirect] 0.8 ;/.,’4—0———4
— gf] —
g 2 06}]
< &b] 2
[0} [0}
€ 041 1
E L | E
of] 0.2F]
8 . . a 0'8 A A .
.0 0.5 1.0 15 2.0 .0 0.5 1.0 15 2.0
memory size (TB) memory size (TB)
(a) Page-out decision (b) Page-out (VMembDirect)
1.0 T 1.0 T
—e— VMemDirect -e- VMembDirect
0.8H o~ S-memV g 0.8 = S-memV]
o o
\ﬂwi 0.6 1 g 0.6 1
£ 04} {1 Eoa4f 1
0.2} 1 0.2f 1

0'8.0 0.5 1.0 1.5 2.0 0'8.0 0.5 1.0 1.5 2.0
memory size (TB) memory size (TB)
(c) Memory division (d) LRU update

Figure 9. The performance of LRU management.

time was only slightly proportional to the memory size of
a VM.

Fig. 9(c) shows the time for dividing the memory of
a VM. The division time in VMemDirect was up to 8.1%
longer than in S-memV. This is because the chunk queues
consist of linked lists and the hit ratio of the CPU cache
decreased. However, this extra overhead is negligible com-
pared with a long migration time. Fig. 9(d) shows the
time for updating LRU management data, i.e., the chunk
queues in VMemDirect and the memory access history used
in S-memV. The update time in VMemDirect was almost
the same as in S-memV. This overhead came from the
reconstruction of the linked lists in the chunk queues.

6. Related Work

vMotion provides two different migration methods in
terms of swap space [4]: unshared- and shared-swap vMo-
tion. Shared-swap vMotion stores a swap file in shared
storage. Upon VM migration, the destination host uses
temporary swap space and integrates it into a shared one
later. This method always needs slow network paging. Like
shared-swap vMotion, Agile live migration [5] locates swap
space for each VM in the network. It aggressively pages out
memory data to swap space on VM migration. This method
can further improve migration performance, but the paging
overhead is much larger.

FlashVM [6] is virtual memory using paging based
on SSDs. It pages out more memory pages at once than
when using HDDs. Since random reads of SSDs are fast,
FlashVM prefetches more useful pages to reduce page faults.
In addition, it adjusts the rate of writeback to SSDs to
reduce the latency of page faults. This prefetching technique
can improve the performance of private virtual memory in
VMemDirect.

VSwapper [7] improves the performance of VMs using
virtual memory. It monitors storage I/O and prevents unmod-
ified pages from being written to swap space on page-outs.
Also, it stores data written to paged-out pages in a temporal
buffer and prevents data from being read from swap space
if the entire page is written. These optimizations achieve
10x performance improvement. They can also be applied to
private virtual memory in VMemDirect.

Multi-generational LRU (MGLRU) [8] uses multiple
lists called generations. An accessed page is added to the
youngest generation. An idle page is moved to the next
older generation. An evicted page is selected from the oldest
generation. This is similar to our chunk queues, but VMem-
Direct moves an accessed memory chunk to an intermediate
queue, considering the previous access history.

7. Conclusion

This paper proposed VMemDirect for efficient memory-
virtualizing VM migration. VMemDirect provides private
virtual memory with private swap space on an NVMe SSD
for each VM. It directly transfers memory data to either
physical memory or private swap space. Our experimental
results show that VMemDirect could improve the perfor-
mance of VM migration and migrated VMs dramatically.
Our future work is to compare the performance of VMem-
Direct using various types of SSDs. We are also planning
to create private swap space on Intel Optane DC persistent
memory.

Acknowledgment

This work was partially supported by JST, CREST
Grant Number JPMJCR21M4, Japan. These research results
were partially obtained from the commissioned research
(No0.05501) by National Institute of Information and Com-
munications Technology (NICT), Japan.

References

[1] M. Suetake, T. Kashiwagi, H. Kizu, and K. Kourai, “S-memV: Split
Migration of Large-memory Virtual Machines in IaaS Clouds,” in Proc.
Int. Conf. Cloud Computing, 2018, pp. 285-293.

[2] Y. Muraoka and K. Kourai, “Efficient Migration of Large-memory
VMs Using Private Virtual Memory,” in Proc. Int. Workshop on
Information Network Design, 2019, pp. 380-389.

[3] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker, “Can Far Memory Improve
Job Throughput?” in Proc. European Conf. Computer Systems, 2020.

[4] 1. Banerjee, P. Moltmann, K. Tati, and R. Venkatasubramanian,
“VMware ESX Memory Resource Management: Swap,” VMware Tech-
nical Journal, vol. 3, no. 1, pp. 48-56, 2014.

[5] U. Deshpande, D. Chan, T. Guh, J. Edouard, K. Gopalan, and N. Bila,
“Agile Live Migration of Virtual Machines,” in Proc. Int. Parallel and
Distributed Processing Symp., 2016.

[6] M. Saxena and M. Swift, “FlashVM: Virtual Memory Management on
Flash,” in Proc. Annual Technical Conf., 2010.

[71 N. Amit, D. Tsafrir, and A. Schuster, “VSwapper: A Memory Swapper
for Virtualized Environments,” in Proc. Int. Conf. Architectural Support
for Programming Languages and Operating Systems, 2014, pp. 349—
366.

[8] J. Corbet, “The Multi-generational LRU,” https://lwn.net/Articles/
851184/, 2021.

