
An Efficient State-Saving Mechanism for Out-of-band Container Migration

Yuki Asakura
Kyushu Institute of Technology
asakura@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@csn.kyutech.ac.jp

Abstract—Many clouds provide containers as lightweight virtu-
alized environments inside virtual machines (VMs). Containers
can be migrated between source and destination VMs for vari-
ous reasons such as load balancing. However, the performance
of container migration is largely degraded by the load and vir-
tualization overhead of VMs because the migration mechanism
runs inside VMs. Conversely, the performance of containers
is largely affected by the load of container migration. This
paper proposes OVmigrate to enable out-of-band container
migration, which migrates a container running inside a VM
from the outside of the VM. OVmigrate analyzes and obtains
the states of a container in the memory of the source VM
using a technique called VM introspection. It enables the
migration mechanism outside a VM to independently save
the states of a container running inside the VM. We have
implemented OVmigrate for Linux and KVM and compared
the performance of state saving with the existing tool called
CRIU running inside the VM.

Index Terms—Container, migration, virtual machine, VM in-
trospection, high load

1. Introduction

Recently, clouds that provide containers are widely used,
e.g., Amazon Elastic Container Service (ECS) [1] and
Elastic Kubernetes Service (EKS) [2], Google Kubernetes
Engine (GKE) [3], and Microsoft Azure Kubernetes Ser-
vice (AKS) [4]. A container is a lightweight virtualization
environment provided by the operating system (OS) and
consists of several processes and its execution environment.
In clouds, containers often run in virtual machines (VMs)
to make node management easier [1]–[4]. A container can
be moved between VMs using a technique called container
migration. For example, container migration can be used
for load balancing, which moves several containers in an
overutilized VM to underutilized VMs at the same or dif-
ferent hosts.

Container migration often has to be performed when the
load of the source VM is high. As mentioned above, load
balancing is necessary to decrease the load of overutilized
VMs. In such a case, the performance of container migration
can be largely degraded because the migration mechanism
runs inside the overutilized source VM. In addition, the

performance of container migration is largely affected by the
virtualization overhead introduced by VMs. For example,
the performance of I/O, such as virtual disks and networks,
is lower in a VM. Since the load of container migration itself
is high, the migration mechanism inside the source VM can
also affect the performance of containers largely.

This paper proposes OVmigrate to enable out-of-band
container migration, which migrates a container running
inside a VM from the outside of the VM. OVmigrate obtains
the states of a container stored in the memory of the source
VM using a technique called VM introspection (VMI) [5].
Then, it transfers the saved states to the destination host
and restores a container in the destination VM. OVmigrate
can achieve rapid container migration without the impact of
the load or virtualization overhead of VMs. In addition, it
prevents container migration from affecting the performance
of containers in the source VM.

We have implemented OVmigrate using KVMonitor [6]
and LLView [7]. OVmigrate shares the memory of a VM
with the migration mechanism running outside the VM and
obtains OS data from the shared memory. Then, it analyzes
the OS data using the source code of the OS. Since the
states of a container mainly consist of the states of processes
running in the container, OVmigrate saves information on
process memory, files, threads, clocks, resource control, etc.
Our experiments showed that OVmigrate could save the
states of a process from the outside of a VM and that the
existing tool called CRIU [8] could successfully restore that
process using the saved states inside the VM. Compared
with CRIU, the performance of state saving was up to 7.3x
faster.

The organization of this paper is as follows. Section 2
describes issues in container migration. Section 3 proposes
OVmigrate for saving the states of a container outside a VM,
and Section 4 explains its implementation. Section 5 shows
experiments to examine the performance of state saving.
Section 6 describes related work, and Section 7 concludes
this paper.

2. Background

Recently, clouds such as Amazon ECS and EKS, Google
GKE, and Microsoft AKS provide containers. A container is
a lightweight virtualized environment provided by the OS.
Unlike traditional virtualization using VMs, containers share

source VM

migration
mechanism

migration
mechanism

destination VM

states
save restore

processes

container

process

container container

Figure 1: Traditional container migration inside VMs.

the underlying OS kernel. A container runs several processes
on top of the OS and provides an execution environment
such as filesystems and network interfaces. Since a container
consists of a smaller amount of resources, it can boot and
run faster than a VM. In clouds, containers often run in VMs
[1]–[4]. This is because it is more flexible to manage VMs
than physical hosts.

Like VM migration, a container running in a VM can be
moved to another VM using a similar technique. Fig. 1 il-
lustrates traditional container migration. First, the migration
mechanism in the source VM saves the states of the running
processes and the execution environment of a container.
Then, it transfers the saved states to the destination VM via
the virtual network. The migration mechanism in the desti-
nation VM restores the container from the received states.
Using container migration, load balancing can be achieved
between VMs by migrating containers from overutilized
VMs to underutilized VMs at the same or different hosts.
When administrators update the OS in a VM and reboot the
VM, they can continue to run containers by migrating them
to other VMs in advance.

Since many containers are consolidated into one VM,
containers often have to be migrated when the load of the
VM running them is high. For example, load balancing
with container migration is performed when a high VM
load is detected. The load of the VM running a container
can further increase while that container is being migrated.
In such cases, container migration can be largely affected
by the load of the VM. This leads to large performance
degradation of container migration. Conversely, the load of
container migration can affect the performance of containers
running in the same VM.

In terms of VMs, load balancing with VM migration
has been explored extensively. For example, Sandpiper [9]
recommends performing VM migration when the utiliza-
tion of CPUs or networks exceeds 75%. This threshold is
determined to accommodate the overhead of VM migra-
tion because VM migration degrades server and network
performance by 50% and 20%, respectively. However, low
resource utilization results in an increase in the cost of
clouds. Also, it is reported that Google Compute Engine
(GCE) adjusts the speed of VM migration when the load
of the source host is high [10]. Using this method, load
balancing cannot be completed rapidly.

In addition, container migration is affected by the vir-
tualization overhead of VMs because the migration mech-

low load
high load

sa
ve

 ti
m

e
(s

ec
)

0

100

200

300

400

500

(a) Load

host
VM

sa
ve

 ti
m

e
(s

ec
)

0
5

10
15
20
25
30
35

(b) Virtualization

Figure 2: The impact of the load and virtualization overhead
of a VM on state saving.

idle
CRIU

th
ro

ug
hp

ut
 (M

B/
s)

0

2

4

6

8

10

Figure 3: The impact of state saving on an in-memory
database inside a VM.

anism also runs inside VMs. In fact, it is reported that
network virtualization is the root cause of performance
degradation and increases CPU utilization by 70% and
118% in the source and destination VMs, respectively [11].
Therefore, Portkey [11] bypasses the virtual network to
transfer the states in container migration. However, it needs
to modify the migration mechanism and the guest OS in a
VM.

According to our experiments, the performance of con-
tainer migration is also degraded due to inter-process com-
munication and disk I/O by the migration mechanism in
the source VM. Fig. 2(a) shows the impact of a high load
inside a VM on saving the states of a process. Compared
with under a low load, the save time is 6.1x longer and
more unstable. Fig. 2(b) shows how virtualization affects
the performance of state saving. The save time in a VM
is 20-77% longer and much more unstable than without a
VM. In addition, Fig. 3 shows that state saving degrades the
performance of an in-memory database inside a VM by 2x.

3. OVmigrate

This paper proposes OVmigrate to enable out-of-band
container migration, which migrates containers outside VMs
for lightweight container migration. Fig. 4 illustrates out-
of-band container migration with OVmigrate. As described
in Section 2, traditional container migration runs the mi-
gration mechanism inside VMs with the target container.
In contrast, OVmigrate runs the migration mechanism in
the same host but outside VMs. At the source host, the
migration mechanism outside the VM saves the states of a

source VM

migration
mechanism

migration
mechanism

destination VM

states
save restore

processes

container

process

container container

Figure 4: Out-of-band container migration with OVmigrate.

container running inside the VM. Then, it transfers the saved
states to the destination host using the physical network,
not the virtual one. At the destination host, the migration
mechanism outside the VM restores that container inside the
VM using the received states. Since the source VM tends to
be overutilized, we focus on saving the states of a container
outside the source VM in this paper.

Since OVmigrate performs the state saving of a container
outside a VM, it can easily protect the migration mechanism
from the load of the VM. It can assign a fixed amount of
resources such as CPUs and memory to the VM and prevent
the VM from using extra resources. It can limit the I/O
bandwidth to the VM and suppress the load of the VM even
when the VM submits a large amount of I/O. In addition,
the migration mechanism can avoid virtualization overhead
introduced by VMs because it does not run inside the VM.
Conversely, the migration mechanism does not affect the
performance of containers running inside the VM because
the host can usually assign surplus resources to the migration
mechanism.

OVmigrate mainly saves the states of processes as the
states of a container. A container consists of running pro-
cesses and their execution environment, but most of the
states are those of the processes. In addition, most of the
information on the execution environment of a container
is included in the states of processes. The states of a
process consist of information on the memory assigned to
the process, files used by the process, threads created in the
process, clocks used by the process, etc. Also, the states of
an execution environment consist of the resource assignment
and limitation to a process group.

OVmigrate obtains the states of a process in a VM using
VMI [5]. VMI is a technique for obtaining information on
the system inside a VM from the outside of the VM. It
analyzes the data of the OS and processes in the memory
of the VM. OVmigrate finds the process structure from
the process identifier (ID) and obtains various states of
the process by traversing pointers stored in the structure.
VMI enables the migration mechanism to independently run
outside a VM without running a helper process or modifying
the guest OS inside the VM.

To control the execution of a process to be saved from
the outside of a VM, OVmigrate sends signals to the process
using pseudo signal sending [12]. It pauses a process by
sending the STOP signal when it saves the states. This
enables the migration mechanism to consistently save the

VM

migration
mechanism

QEMU-KVM

Linux

memorymemory memory
file

VMI

QMP
high-level
program

LLView

Figure 5: State saving with VMI.

states of the process without any updates from the process
itself. When the migration mechanism completes saving
the states, OVmigrate terminates the process in the source
VM by sending the KILL signal. Pseudo signal sending
is achieved by rewriting kernel data structures in memory
using extended VMI. It changes the states of a process as
if a signal is sent to the process. In addition, it performs
pseudo process scheduling [12] to deliver the signal to the
target process immediately.

4. Implementation

We have implemented OVmigrate for Linux 5.4 as a
guest OS in VMs running on top of QEMU-KVM 4.2.0 [13].
The states that OVmigrate currently saves are information on
memory, files, threads, clocks, resource control, and so on.
All of them are saved by CRIU [8], which is the traditional
tool for saving and restoring the states of processes. This
enables CRIU to restore the process inside the destination
VM.

4.1. State Saving with VMI

OVmigrate performs VMI using KVMonitor [6], as il-
lustrated in Fig. 5. First, OVmigrate prepares the memory
assigned to a VM as a special file called a memory file.
It maps the memory file to the VM and provides physical
memory. It also maps that file to the migration mechanism
so that the migration mechanism can access the memory of
the VM. Next, OVmigrate communicates with QEMU-KVM
using the QEMU machine protocol (QMP) and obtains the
address of the page tables, which is stored in the CR3
register of the virtual CPUs in the VM. Using the obtained
page tables, it translates the virtual addresses of OS data into
physical ones and accesses the memory of the VM using
those addresses.

To develop the migration mechanism that obtains the
states of processes using VMI, we used the LLView frame-
work [7]. It is not an easy task to analyze OS data in the
memory of a VM because developers need to find necessary
data using only low-level information. LLView enables users
to develop systems that analyze OS data with VMI as kernel
modules. Developers can write high-level programs using
the kernel data structures and global variables defined in the
header files of the Linux kernel. LLView compiles developed
programs and converts generated LLVM intermediate code
to embed code for accessing the memory of a VM.

init_task

mm_struct vm_area_structtask_struct

memory
layout virtual

memory
page table

process ID

:

:

Figure 6: Analyzing memory information.

4.2. Saving Memory Information

As information on memory used by a process, OVmi-
grate saves the layout of process memory, as illustrated in
Fig. 6. First, OVmigrate traverses the process list from the
init task kernel variable in the memory of a VM and finds
the task struct structure corresponding to the specified
process ID. Next, it follows the pointer in that structure and
finds the mm struct structure, which contains information
on the entire process memory. Then, it obtains the start and
end addresses of the code, data, and heap areas, and the start
address of the stack. In addition, it obtains the start and end
addresses of the areas storing the arguments passed to the
process and the environment variables.

As information on virtual memory, OVmigrate saves
information on all the virtual memory areas allocated to
the process. For this purpose, it finds the vm area struct
structure from the mm struct structure. Then, it obtains
the start and end addresses of virtual memory areas, access
rights, flags, and status. For a virtual memory area that maps
a file, it also obtains the file offset.

As information on page mapping, OVmigrate saves the
start addresses of virtual memory areas and the number of
physical pages actually assigned. The former information is
included in the information on virtual memory areas saved
above, but it is saved independently so that it corresponds to
the saved data of memory pages. Since physical pages are
not assigned to all the pages in the virtual memory areas,
OVmigrate checks whether physical pages are assigned or
not from the start address of each virtual memory area
obtained from the vm area struct structure. To do this,
it examines the page tables of the process obtained from
the mm struct structure. If there is no page table entry or
if the present bit in the corresponding page table entry is
zero, OVmigrate does not save information on that page. In
addition, it does not save information on a page if the page is
not anonymous. Finally, it divides the memory region where
physical pages are assigned and contiguous into 1024 pages
at maximum and saves information on these chunks.

As actual memory data, OVmigrate saves the contents
of the pages that are assigned to the process and where files
are not mapped. For an existent page, it obtains the 4-KB
data of the page. Then, it saves the data in the order of the
virtual memory areas saved in the page mapping.

files_struct fdtable_structtask_struct file [] inode

mm_struct vm_area_struct path

tty_struct tty_driver

fs_struct

file
array

file
type

device
type

mode major
minor

umask

Figure 7: Analyzing file information.

4.3. Saving File Information

For the files that the process opens, OVmigrate saves
information on their file descriptors, as illustrated in Fig. 7.
First, it finds the files struct structure from the task struct
structure. Then, it finds the fdtable structure from that
structure. These structures manage information on all the
files opened by the process. The fdtable structure has an
array of the file structure, which stores information on a
file. OVmigrate obtains the file descriptor number from the
index in that array. It also obtains the file type, the flags
associated with the file descriptor, and the value of the file
pointer from the file structure. In addition, it calculates an
ID using that file pointer and the inode number stored in
the inode structure, which OVmigrate finds from the file
structure.

Furthermore, OVmigrate saves detailed information for
each file type. In the case of an executable file and shared
libraries loaded into the process and normal files mapped
onto the process address space, it finds the file structure
from the vm area struct structure. Then, it finds the inode
structure from that structure and obtains the file size and the
detailed type. Also, it recursively traverses the directories
from the path structure contained in the file structure and
obtains the path name of the file.

In the case of terminal devices (tty) such as standard I/O,
OVmigrate saves detailed information on the devices. It first
finds the tty struct structure from the file structure. From
this structure, it obtains the I/O modes, control characters,
the I/O speed, etc., which are defined in the POSIX termios.
It also obtains the state of the terminal device and the IDs of
the session and the process group that controls the terminal
device. Furthermore, it finds the tty driver structure from
the tty struct structure and calculates the ID of the terminal
device using the major and minor device numbers obtained
from that structure. In addition, it obtains the user and group
IDs of the device from the inode structure.

As information on filesystems, OVmigrate saves the
access permission (umask) used for creating new files
and directories. It finds the fs struct structure from the
task struct structure and obtains the value of umask.

4.4. Saving Thread Information

As the execution state of the process, OVmigrate saves
the states of threads. Since register information depends on
processors, OVmigrate currently supports x86-64 processor
families. First, it obtains the address of the kernel stack
assigned to the process. Since the CPU registers of a stopped
process are stored in the kernel stack, OVmigrate obtains
the values of CPU registers from the kernel stack. For
the FSBASE and GSBASE registers, OVmigrate finds the
thread struct structure from the task struct structure and
obtains the values stored in the structure or calculates the
values from the information stored in the structure. For the
XMM registers and the segment descriptors, it obtains the
values from this structure.

4.5. Saving Clock Information

As clock information, OVmigrate saves the monotonic
time and the boot time. To calculate the monotonic time, it
obtains the wall clock and the offset from the wall clock
stored in the timekeeper structure, which is pointed by
the tk core kernel variable. Then, it adds the offset to
the wall clock. To calculate the boot time, it obtains the
offset from the monotonic time and adds the offset to the
monotonic time. For these times, it is necessary to add
time differences from the last update on the wall clock.
This needs to obtain the value of the timestamp counter by
executing the RDTSC instruction inside the VM. However,
OVmigrate cannot obtain this value outside the VM. In the
current implementation, it assumes that this time difference
is zero, although the saved times contain slight errors.

4.6. Saving Cgroup Information

As the information of the control group (cgroup), OVmi-
grate saves the names and paths of its subsystems, the
parameters, and their values. Cgroup is a mechanism for as-
signing and limiting resources to a process group. It is used
to isolate a process from the other containers. In cgroup,
subsystems exist for each resource such as memory and
CPUs and have several parameters. For example, the maxi-
mum size of available memory is set to the limit in bytes
parameter in the memory subsystem.

As illustrated in Fig. 8, OVmigrate first finds the
css set structure from the task struct structure and then
finds the cgroup structure from that structure. The cgroup
structure contains the node information of the kernel filesys-
tem (kernfs). OVmigrate obtains the path by traversing
kernfs from that node to the root node. Next, it obtains
the names of the parameters from the cgroup subsys
structure provided for each subsystem. Also, it finds the
cgroup subsys state structure from css set structure
and then finds a subsystem-specific structure from that struc-
ture. For example, the cpuset structure contains parameters
in the CPU subsystem. The mem cgroup structure contains
parameters in the memory subsystem. OVmigrate obtains
the values of the parameters from these structures.

css_set cgrouptask_struct

cgroup_subsys

kernfs
node

cgroup_subsys_state

param
name

cgroup_subsys

param
value

cpuset

mem_cgroup

param
value

Figure 8: Analyzing cgroup information.

pagemap.proto

message pagemap_entry {
 uint64 vaddr = 1;
 uint32 nr_pages = 2;
 uint32 flags = 3;
}

PagemapEntry

image
file

protobuf write

VMI

page mapping
information

VM

Figure 9: Saving process information with protocol buffer.

4.7. Serialization with Protocol Buffer

OVmigrate saves the states of a process in the same
format as used in CRIU 3.16. CRIU defines the states in
the proto files and serializes the states using the protocol
buffer [14]. A proto file defines a message for each type of
the states and defines each state in each field of the message.
OVmigrate uses the same proto files, saves the states using
the protocol buffer for C [15], and writes them to image
files, as illustrated in Fig. 9.

4.8. Controlling Saved Processes

OVmigrate sends signals to processes in a VM using
pseudo signal sending provided by VMMfas [12] to pause
and terminate the processes. It finds the sigpending struc-
ture from the task struct structure and sets the bit corre-
sponding to the signal bitmap in the structure. Then, it finds
the thread info structure from the task struct structure
and sets the pending flag. When the kernel schedules this
process, it checks this flag and delivers signals to the process
if necessary.

Since only this cannot deliver a signal to a paused
process, OVmigrate resumes the process using pseudo pro-
cess scheduling. It finds the sched entity structure from
the task struct structure and adds it to the red-black tree
contained in the cfs rq structure, which is used by the
CFS scheduler in Linux. Finally, it changes the state of
the process contained in the task struct to be runnable.
When the kernel performs process scheduling, it schedules
this process soon.

5. Experiments

We conducted several experiments to examine the effec-
tiveness of OVmigrate. First, we confirmed that OVmigrate
could save the states of a process outside a VM. Then, we
measured the time needed to save the states under various
loads 10 times. For comparison, we measured the time
to save the states inside a VM using CRIU. In addition,
we examined the performance impact on another process
inside the VM by state saving. We used a PC with an Intel
Core i7-10700 processor, 64 GB of memory, and 2 TB of
SATA HDD. We ran Linux 5.4 and QEMU-KVM 4.2.0 as
virtualization software on this PC. We assigned two virtual
CPUs and 30 GB of memory to a VM by default and ran
Linux 5.4 in the VM.

5.1. Correctness of State Saving

To confirm the capabilities of OVmigrate, we saved the
states of a process outside a VM. As a process, we executed
a program that increased a counter value every second and
showed the value. This program used an interval timer, the
ALRM signal, and the standard output. When OVmigrate
completed saving the states, the process was terminated.
After that, we transferred the saved states to the inside of
the VM and restored the process using CRIU. As a result,
the process was restored correctly and continued to show
the counter value. This means that OVmigrate could save
the states of the process correctly.

5.2. State Saving under a Low Load

We measured the time needed to save the states of a
process under a low load. In this experiment, we ran a
process using memory dynamically allocated between 0 and
20 GB in the VM with 30 GB of memory. Fig. 10 shows
the save time in OVmigrate and CRIU. When the process
allocated 10 and 20 GB of memory, OVmigrate was 1.6x
and 1.3x faster than CRIU, respectively, because it was
not affected by the virtualization overhead of the VM. The
variance was also smaller in OVmigrate, which means that
OVmigrate could save the states of the process more stably.
In contrast, OVmigrate was 4.5x slower than CRIU when the
process did not dynamically allocate memory at all. This is
due to the overhead of analyzing the complex data structures
of the OS using VMI. In this case, the variance was larger
in OVmigrate.

Next, we examined the performance when the amount
of free memory was smaller at the host level. We assigned
50 GB of memory to the VM, so that the host-level free
memory was only 11 GB. In this experiment, we ran a
process using memory dynamically allocated between 10
and 40 GB in the VM. Fig. 11 shows the save time. When
the process allocated 10 GB of memory, OVmigrate was
2.9x slower than CRIU. This is because the host-level page
cache overflowed when OVmigrate saved more than 10 GB
of process memory to the image file. As a result, the host
OS wrote dirty data on the disk during state saving. In

CRIU
OVmigrate

sa
ve

 ti
m

e
(s

ec
)

0

25

50

75

100

125

150

process memory
10 GB 20 GB

(a) Large processes

CRIU
OVmigrate

sa
ve

 ti
m

e
(m

s)

0

20

40

60

80

100

(b) Small process

Figure 10: The save time under a low load.

CRIU
OVmigrate

sa
ve

 ti
m

e
(s

ec
)

0

100

200

300

400

process memory
10 GB 20 GB 30 GB 40 GB

Figure 11: The save time with less host-level memory under
a low load.

contrast, OVmigrate became faster than CRIU when the
process allocated more than 20 GB of memory. For 40 GB,
the performance was improved by 1.3x. This is because the
guest-level page cache also overflowed due to state saving
by CRIU inside the VM.

5.3. State Saving under a High CPU Load

We measured the time needed to save the states of a
process under a high CPU load. We ran stress-ng [16] inside
the VM to generate a high CPU load. First, we ran a process
using 10 GB of memory in the VM with 30 GB of memory
and compared the save time between low and high loads.
As shown in Fig. 12, CRIU became 1.8x slower under a
high CPU load. This means that CRIU was largely affected
by the CPU load inside the VM. In contrast, OVmigrate
was only 11% slower because the CPU load inside the VM
almost did not affect the migration mechanism using CPUs
outside the VM.

Next, we compared the save time between OVmigrate
and CRIU. We ran a process using memory dynamically
allocated between 10 and 20 GB in the VM with 30 GB
of memory. As shown in Fig. 13, OVmigrate was 2.6x
and 2.0x faster than CRIU, respectively. This performance
improvement is much larger than in a low load. This means
that OVmigrate could reduce the impact of the load inside a
VM more largely than that of virtualization overhead. The
variance of the save time was also smaller.

Similarly, we measured the save time when the host-level
free memory was smaller, i.e., 11 GB. We ran a process

low load
high load

sa
ve

 ti
m

e
(s

ec
)

0

20

40

60

80

100

120

CRIU OVmigrate

Figure 12: Comparison between low and high loads.

CRIU
OVmigrate

sa
ve

 ti
m

e
(s

ec
)

0

50

100

150

200

250

process memory
10 GB 20 GB

Figure 13: The save time under a high CPU load.

using memory between 10 and 40 GB inside the VM with
50 GB of memory. Unlike under a low load, OVmigrate
was always faster than CRIU, as shown in Fig. 14. As
the amount of memory used by the process increased, the
performance improvement became larger. OVmigrate was
1.5x faster for 10 GB of memory, whereas it was 1.9x
faster for 40 GB of memory. This is because the guest-level
page cache overflowed more largely due to state saving by
CRIU inside a VM when the size of process memory became
larger.

5.4. State Saving under Various Loads

We measured the time for saving the states of a process
under various loads. We generated a high load on CPUs,
pipe, memory, I/O, the filesystem, and the device by running
stress-ng inside the VM. We ran a process using 10 GB of
memory in the VM with 30 GB of memory. Fig. 15 shows
the save time in OVmigrate and CRIU. CRIU was affected
by all but the device load. Compared with a low load, the
save time was 4.4x and 6.1x longer under the pipe and
filesystem loads, respectively. Especially, it failed to save
the states for the loads on memory and I/O.

In contrast, OVmigrate always succeeded in saving the
states of the process. For the pipe load, the save time was
the same as in a low load. Since CRIU was largely affected
by the pipe load, OVmigrate was 7.4x faster than CRIU.
However, it was largely affected by the loads on I/O and
the filesystem. These save times were 13x longer than in
a low load. Especially, OVmigrate was 23% slower than
CRIU under the filesystem load. This is because we did not
explicitly limit the amount of resources assigned to the VM.

CRIU
OVmigrate

sa
ve

 ti
m

e
(s

ec
)

0

100

200

300

400

500

process memory
10 GB 20 GB 30 GB 40 GB

Figure 14: The save time with less host-level memory under
a high CPU load.

N/A N/A

CRIU
OVmigrate

sa
ve

 ti
m

e
(s

ec
)

0

100

200

300

400

500

cpu pipe memory io filesystem device

Figure 15: The save time under various loads.

If we limit the usage of such shared I/O, the performance
of OVmigrate would be improved.

5.5. Performance Impact of State Saving

To examine the impact on other processes inside a VM
by state saving, we measured the time needed to store data
in an in-memory database. We ran a process using 30 GB
of memory in the VM with 50 GB of memory. We also ran
memcached [17] in the VM and stored data of 1 GB during
state saving. As a baseline, we measured the time while the
VM was idle. As shown in Fig. 16, OVmigrate did not affect
the performance of memcached at all. In contrast, CRIU
slowed down memcached by 2x due to resource contention
in the VM.

6. Related Work

Portkey [11] enables containers in VMs to be efficiently
migrated by optimizing network transfers. When CRIU
transfers the states of a container, it invokes the kernel
module provided by Portkey. The kernel module invokes the
hypervisor by bypassing network processing in the guest OS.
The hypervisor transfers the states to the destination host.
In the destination VM, CRIU receives the states from the
hypervisor via the kernel module. Portkey can suppress CPU
utilization during container migration by network transfers
at the hypervisor layer, but it cannot reduce the migration
time. In contrast, OVmigrate can transfer the states of a
container completely outside the source VM. This could

idle
CRIU
OVmigrate

ex
ec

ut
io

n
tim

e
(s

ec
)

0

100

200

300

400

500

Figure 16: The performance of memcached during state
saving.

eliminate CPU utilization more largely and lead to the
reduction of the migration time.

mWarp [18] relocates process memory between VMs
for container migration and does not perform the time-
consuming copy or transfer of memory data. In the source
VM, CRIU invokes the hypervisor via the system call and
notifies information on process memory. In the destination
VM, CRIU invokes the hypervisor and re-maps the mem-
ory of the source VM to the destination VM to complete
transferring process memory. However, mWarp is applicable
only to container migration between VMs in the same host.
OVmigrate can perform the same optimization when the
source and destination VMs exist in the same host.

Similarly, VMBeam [19] enables the zero-copy migra-
tion of a guest VM running in a host VM. The migration
mechanism invokes the hypervisor in the source and desti-
nation host VMs. The hypervisor swaps the memory of a
guest VM between the two host VMs to complete memory
transfers efficiently. VMBeam is also an optimization that
is applicable only to VM migration in the same host.

Sledge [20] enables efficient live migration of Docker
containers. It does not transfer redundant layers in the hierar-
chical image used by a container at the source host. It repeat-
edly transfers only the differences of process memory using
incremental checkpointing provided by CRIU. It does not
perform the time-consuming reload of the Docker daemon at
the destination host but loads only the management context.
OVmigrate can use some of these optimization techniques.

7. Conclusion

This paper proposed OVmigrate to enable out-of-band
container migration. OVmigrate analyzes the memory of a
VM using VMI and saves the states of a container running
inside the VM from the outside of the VM. It can minimize
the impact of the load and virtualization overhead of VMs
on the performance of container migration. Also, it can
minimize the impact of the load of container migration on
the performance of containers. Our experiments showed that
OVmigrate could save the states of a process up to 7.3x
faster.

Our future work is to support state saving for various
containers. For example, OVmigrate needs to save the states
of processes that use unsupported OS functions and those

managed by a container engine like Docker [21]. Currently,
we are developing a mechanism for state restoring outside
VMs. Using this mechanism, OVmigrate can completely
achieve out-of-band container migration.

Acknowledgments

This work was partially supported by JST, CREST
Grant Number JPMJCR21M4, Japan. These research re-
sults were partly obtained from the commissioned research
(JPJ012368C05501) by National Institute of Information
and Communications Technology (NICT), Japan.

References

[1] Amazon Web Services, Inc., “Amazon Elastic Container Service,”
https://aws.amazon.com/ecs/.

[2] ——, “Amazon Elastic Kubernetes Service,” https://aws.amazon.com/
eks/.

[3] Google, Inc., “Google Kubernetes Engine,” https://cloud.google.com/
kubernetes-engine.

[4] Microsoft Corporation, “Azure Kubernetes Service,” https://azure.
microsoft.com/en-us/products/kubernetes-service/.

[5] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection
Based Architecture for Intrusion Detection,” in Proc. Network and
Distributed Systems Security Symp., 2003, pp. 191–206.

[6] K. Nakamura and K. Kourai, “Efficient VM Introspection in KVM
and Performance Comparison with Xen,” in Proc. Pacific Rim Int.
Symp. Dependable Computing, 2014, pp. 192–202.

[7] Y. Ozaki, S. Kanamoto, H. Yamamoto, and K. Kourai, “Reliable and
Accurate Fault Detection with GPGPUs and LLVM,” in Proc. Int.
Conf. Cloud Computing, 2023, pp. 540–546.

[8] OpenVZ Team, “CRIU,” https://criu.org/Main Page.
[9] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box

and Gray-box Strategies for Virtual Machine Migration,” in Proc.
Symp. Networked Systems Design & Implementation, 2007.

[10] A. Ruprecht, D. Jones, D. Shiraev, G. Harmon, M. Spivak, M. Krebs,
M. Baker-Harvey, and T. Sanderson, “VM Live Migration at Scale,”
in Proc. Int. Conf. Virtual Execution Environments, 2018, pp. 45–56.

[11] C. Prakash, D. Mishra, P. Kulkarni, and U. Bellur, “Portkey:
Hypervisor-Assisted Container Migration in Nested Cloud Environ-
ments,” in Proc. Int. Conf. Virtual Execution Environments, 2022, pp.
3–17.

[12] K. Kimura and K. Kourai, “Xfas: Fault Recovery by Externally
Controlling OS Behavior,” in Proc. Int. Conf. Utility and Cloud
Computing, 2023.

[13] F. Bellard, “QEMU,” https://www.qemu.org/.
[14] Google Inc., “Protocol Buffers,” https://developers.google.com/

protocol-buffers.
[15] D. Benson, “Protocol Buffers Implementation in C,” https://github.

com/protobuf-c/protobuf-c.
[16] C. I. King, “Stress-ng,” https://github.com/ColinIanKing/stress-ng.
[17] B. Fitzpatrick, “memcached – A Distributed Memory Object Caching

System,” http://memcached.org/.
[18] P. Sinha, S. Doddamani, H. Lu, and K. Gopalan, “mWarp: Acceler-

ating Intra-Host Live Container Migration via Memory Warping,” in
Proc. Conference on Computer Communications Workshops, 2019.

[19] H. Ooba and K. Kourai, “Zero-copy Migration for Lightweight
Software Rejuvenation of Virtualized Systems,” in Proc. Asia-Pacific
Workshop on Systems, 2015.

[20] B. Xu, S. Wu, J. Xiao, H. Jin, G. Shi, J. Rao, L. Yi, and J. Jiang,
“Sledge: Towards Efficient Live Migration of Docker Containers,” in
Proc. Int. Conf. Cloud Computing, 2020, pp. 321–328.

[21] Docker Inc., “Docker: Accelerated Container Application Develop-
ment,” https://www.docker.com/.

