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Abstract—Clouds provide virtual machines (VMs) to users and
often collect internal information using agents running in VMs
for system monitoring. One issue with using agents is that
agents themselves can become vulnerabilities in VMs. Clouds
can also obtain internal information by directly accessing the
memory of VMs with VM introspection (VMI). However, VMI
is too powerful for clouds to monitor users’ VMs. Unlike the
agent method, users cannot control system monitoring with
VMI. This paper proposes TeleBPF for safer system moni-
toring of VMs. TeleBPF enables clouds to dynamically inject
verifiable eBPF programs into VMs as agents and obtain their
internal information. To transparently run monitoring tools
outside VMs, TeleBPF intercepts eBPF-related system calls
and forwards them to VMs. In addition, it enables monitoring
tools to obtain information from eBPF programs by sharing
ring buffers with VMs. We confirmed that existing monitoring
tools could run using TeleBPF and showed that they could be
executed faster by reducing virtualization overhead.

Index Terms—eBPF, agent, VM introspection, virtual machine

1. Introduction

Infrastructure-as-a-Service (IaaS) clouds provide virtual
machines (VMs) to users. Users can freely manage the entire
systems in VMs, whereas clouds often monitor the states of
the systems in VMs to enhance observability and security.
They usually use software called an agent to monitor VMs.
This method installs an agent in a VM and obtains the inter-
nal information of the VM from the agent. The agent can be
executed as a process [1] or a kernel module [2]. One issue
with this agent method is that users need to keep the agent
up-to-date by themselves. If they do not update the agent,
the agent itself could become vulnerabilities in the system.
If the agent is executed as a process to suppress the impact
on the system, it cannot monitor all the system information.
If it is executed as a kernel module, its vulnerabilities could
affect the entire system.

To address this issue, clouds can use VM introspection
(VMI) [3], which obtains the internal information of the
system by directly analyzing the memory of a VM. However,
VMI is too powerful for clouds to monitor users’ VMs.
Unlike the agent method, users cannot control system mon-
itoring with VMI at all. In addition, it cannot be used for
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emerging confidential VMs, which are provided by recent
clouds such as Amazon Web Services [4], Google Cloud [5],
and Microsoft Azure [6]. The memory of confidential VMs
is encrypted by processor-based trusted execution environ-
ments (TEEs) such as AMD SEV [7] and Intel TDX [8].
Therefore, clouds cannot obtain the necessary information
by accessing the memory of such VMs.

This paper proposes TeleBPF to monitor the systems in
VMs by injecting eBPF programs from clouds. eBPF [9]
is a mechanism that extends the Berkeley packet filter in
Linux. eBPF programs can monitor the state of the system
at a specified point, e.g., when events occur in the operating
system (OS). TeleBPF uses eBPF programs as safe agents.
eBPF programs can safely run in the OS kernel because
they are checked by the eBPF verifier at load time. TeleBPF
enables clouds to transparently execute existing monitoring
tools developed as eBPF applications on the cloud side and
obtain internal information from VMs. Since clouds can dy-
namically load eBPF programs as agents, users do not need
to maintain agents by themselves. eBPF programs running
inside VMs are not affected by the memory encryption of
confidential VMs.

TeleBPF provides eBPF applications with a shared li-
brary that intercepts eBPF-related system calls. It effi-
ciently achieves the interception of the system calls by
binary rewriting with zpoline [10]. Then, the shared li-
brary forwards the intercepted system calls to VMs using
the VM-specific communication mechanism called the VM
socket [11]. The TeleBPF proxy running in the VMs issues
the forwarded system calls and returns the results of the
system calls to the eBPF applications. In addition, TeleBPF
shares ring buffers used for returning information from eBPF
programs between VMs and eBPF applications and enables
eBPF applications to directly access ring buffers without
network communication. We confirmed that various eBPF
applications ran with TeleBPF and that the monitoring per-
formance outperformed traditional in-VM execution thanks
to the reduction of virtualization overhead.

The organization of the paper is as follows. Section 2
describes the advantages and disadvantages of the agent
method and VMI. Section 3 proposes a new monitoring
system with eBPF, called TeleBPF. Section 4 explains the
implementation of TeleBPF, specifically its shared library
and proxy. Section 5 shows experimental results using
TeleBPF. Section 6 describes related work, and Section 7
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Figure 1. Two existing monitoring methods.
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2. System Monitoring in VMs

In TaaS clouds, users manage their systems inside pro-
vided VMs, whereas clouds often monitor information in-
side VMs and use it for various purposes. For example,
clouds can perform autoscaling accurately by using perfor-
mance metrics inside VMs. They can also detect intrusion
into VMs by analyzing system logs. To obtain system
information inside VMs, they often use an agent method,
which installs agent software in VMs and receives system
information via network communication, as illustrated in
Fig. 1(a). The agent can be implemented as a process or
a kernel module. For example, the Amazon CloudWatch
agent [1] is a process-based agent that collects system logs
and metrics inside VMs to analyze logs and traces. An
example of a kernel-based agent is the monitoring agent in
IBM Cloud [2], which also collects information on executed
system calls.

One issue with the agent method is that the users of
VMs have to maintain the agent by themselves. They need
to install the agent in VMs and periodically update it. If
they neglect the agent updates, the agent could become new
vulnerabilities that are attacked from the outside. Another
issue is that there are trade-offs between process-based
and kernel-based agents. The process-based agent does not
largely affect the monitored system because it runs on top
of the OS, whereas it can be easily disabled by intruders. In
addition, it cannot collect information hidden in the kernel.
In contrast, the kernel-based agent can be protected from
intruders more strongly and collect information on the entire
system. However, its vulnerabilities and instability could
largely affect the entire system because it is embedded in
the kernel.

On the other hand, a method called VMI has been
proposed [3] to collect information from the outside of VMs,
as illustrated in Fig. 1(b). For example, it can obtain the
states of the system by analyzing the kernel data structures
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Figure 2. The system architecture of TeleBPF.

in the memory of VMs. It can also check the integrity of files
and inspect configuration files by analyzing the file systems
used in the virtual disks of VMs. Unlike the agent method,
VMI does not need users to install or update the agent in
VMs. Since there is no agent running inside VMs, VMI
does not introduce new vulnerabilities or instability to the
systems in VMs. In addition, it can access any information
hidden in the kernel and the file systems.

However, VMI has various issues as well. First, it needs
a low-level analysis of the memory and virtual disks of VMs.
It is more difficult to develop monitoring tools with VMI.
Second, VMI is too powerful for clouds to monitor users’
VMs. Since it cannot be controlled by the systems in VMs,
sensitive information could be easily stolen. Third, VMI is
not applicable to confidential VMs, which are introduced to
protect users’ VMs from clouds [4]-[6]. Since the memory
of confidential VMs is encrypted by TEEs such as AMD
SEV and Intel TDX, clouds cannot analyze the memory to
collect internal information. Similarly, VMI cannot analyze
the virtual disks if they are encrypted inside VMs.

3. TeleBPF

This paper proposes TeleBPF to monitor the systems
in VMs by injecting eBPF programs. eBPF is a mecha-
nism provided in the Linux kernel and enables users to
collect various kinds of information by loading programs
into the OS. TeleBPF uses eBPF programs as safe agents.
As illustrated in Fig. 2, TeleBPF transparently executes
existing monitoring tools developed as eBPF applications
on the cloud side and loads eBPF programs into the OS via
the TeleBPF proxy in a VM. The eBPF programs collect
information in the OS and return it to the eBPF applications
via the proxy. Although the proxy needs to be installed in a
VM, it provides only simple functions and rarely needs to be
updated. TeleBPF confines the target system in a container
provided by the OS and runs the proxy outside it to protect
the proxy from intruders in the target system.

The threat model of TeleBPF is as follows. From the
viewpoint of the users of monitored VMs, we do not trust
clouds or eBPF programs injected by them. Also, we do not
trust the target systems running in VMs, which attackers
can intrude into. In contrast, we assume that the OS in a
VM is trusted. This means that there are no vulnerabilities
exploitable by intruders who reside in the target system. In
addition, we assume that the TeleBPF proxy in a VM is



trusted. The attack surface against the OS and the proxy is
narrowed down by running the target system in a container.

Unlike the traditional agent method, TeleBPF enables
clouds to dynamically inject eBPF programs into VMs
when necessary. The users of VMs do not need to install
or update the agent by themselves. Since eBPF programs
run in the OS, they can collect more information than the
agent running as a process. Thanks to the protection of
the OS, eBPF programs are not easily affected by external
attackers. Conversely, dynamically loaded eBPF programs
do not affect the OS kernel by the load-time check with the
eBPF verifier. Unlike VMI, TeleBPF does not need the low-
level analysis of VMs because eBPF programs run inside
VMs. It can collect information inside VMs even if their
memory and virtual disks are encrypted. In addition, the
capabilities of the injected eBPF programs can be controlled
by the OS inside VMs.

To transparently execute eBPF applications on the cloud
side, TeleBPF forwards eBPF-related system calls to the
TeleBPF proxy running in a VM. There are three types
of eBPF-related system calls. First, the system calls for
controlling eBPF are used to execute commands related
to eBPF programs. Using these commands, users can load
eBPF programs in the OS and manage BPF maps, which are
used to pass data between an eBPF application and eBPF
programs. Second, the system calls for controlling events
are used to associate events that occur in the system with
specific eBPF programs. Users can configure the system so
that an eBPF program is invoked by an event, e.g., when a
specific kernel function is executed. Third, the file-related
system calls are used to access special files for eBPF. For
example, such files provide information on trace points.

TeleBPF forwards such eBPF-related system calls to a
target VM as follows. First, it intercepts a system call issued
by an eBPF application. If the intercepted system call is
for controlling eBPF, TeleBPF always forwards it to the
target VM because this type of system call needs to be
executed inside the VM. If the intercepted system call is for
controlling events, TeleBPF checks its type and arguments
and forwards it if necessary. This type of system call is also
used to control events that are not related to eBPF. If the
intercepted system call is for file access, TeleBPF determines
whether it should be forwarded by checking its arguments
because it is a generic system call. If TeleBPF forwards
the system call to the VM, it serializes the arguments and
converts them into a byte sequence. In the VM, the TeleBPF
proxy deserializes the received data and issues the forwarded
system call. Then, the results are forwarded back to the
eBPF application.

In addition, TeleBPF supports data collection using ring
buffers between an eBPF application and eBPF programs.
eBPF applications often use ring buffers to efficiently obtain
information from eBPF programs. A ring buffer is created
in the kernel memory and shared with the process of an
eBPF application. Since the eBPF application accesses the
ring buffer without using any system calls, it is difficult
for TeleBPF to forward that access to the target VM by
intercepting system calls. TeleBPF could trap memory ac-

cess and forward it, but a large performance degradation is
inevitable. Therefore, TeleBPF shares the memory used for
the ring buffer in the VM with the cloud side, so that the
eBPF application can directly access the ring buffer. For this
purpose, TeleBPF forwards the system call for sharing the
ring buffer created in the kernel with a process to the VM.
Then, it enables that memory to be accessed by the eBPF
application outside the VM.

4. Implementation

We have implemented TeleBPF for Linux 5.15 and
QEMU-KVM 8.0.0.

4.1. Intercepting System Calls

To intercept system calls, various techniques are used.
The ptrace system call enables a monitoring process to
intercept all the system calls issued by a target process.
It intercepts system calls in the OS kernel and switches
the contexts between the two processes. Therefore, the
cost of the invocation of system calls becomes very large.
The LD PRELOAD environment variable enables the specified
shared library to indirectly intercept the function calls that
issue system calls in the target application. Since only the
specified functions are replaced with the functions provided
by the shared library, the overhead of intercepting system
calls is much smaller. However, if a function to be replaced
is an inline function, all the functions that invoke that inline
function need to be replaced. This strongly depends on
the implementation of the target application and the used
libraries. In general, it is not easy to replace all the necessary
functions. An eBPF-specific method is to directly modify
the libraries for eBPF, e.g., libbpf [12] and libbce [13]. This
method can intercept inline functions that issue system calls
as well. It is much more flexible, but it can support only
specific eBPF frameworks. Also, it is a troublesome task to
follow the updates of the frameworks.

Therefore, TeleBPF uses a new method called zpo-
line [10]. zpoline rewrites the binary of the target application
at runtime. It is not possible to replace the invocation of sys-
tem calls with arbitrary function calls because the instruction
for invoking a system call is only two bytes. Therefore,
zpoline replaces all the invocations of system calls with the
invocations of the trampoline code. Then, the trampoline
code invokes the function defined for each system call in the
TeleBPF shared library, as illustrated in Fig. 3. This method
can directly intercept system calls like the ptrace method.
Nevertheless, it is much faster than the ptrace method,
although it is slower than the LD PRELOAD method. Note
that we used the LD PRELOAD method for the faccessat
system call because zpoline crashes the interception of that
system call.

4.2. Forwarding System Calls

After the TeleBPF shared library intercepts the invoca-
tion of a system call, it first transfers the number assigned to
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Figure 3. Intercepting the invocation of eBPF-related system calls.

the system call to the TeleBPF proxy running in the target
VM. Then, it serializes the arguments of the system call
using Protocol Buffers [14] and transfers the resultant byte
sequence to the proxy, as illustrated in Fig. 4. For Protocol
Buffers, TeleBPF defines messages for target system calls
and target commands used by several system calls. In the
VM, the proxy deserializes the passed arguments using
Protocol Buffer. According to the received number of the
system call, it issues the corresponding system call with
the received arguments. It transfers the return value of the
system call back to the shared library. If the execution of
the system call fails, the proxy transfers the error number
stored in the errno global variable as well. If any, it transfers
data returned from the system call via its arguments. These
transfers are performed using VM sockets (Vsock) [11],
which are a communication mechanism specific to VMs.
Vsock is used to communicate between the host and a VM
and is faster than TCP/IP.

The TeleBPF proxy converts the value of the file de-
scriptor returned from the forwarded system call. This en-
ables the TeleBPF shared library to determine whether a
system call using a file descriptor should be forwarded or
not. The system call issued by the proxy can return a file
descriptor via its return value or argument. The value of
the file descriptor is uniquely distinguishable only in the
proxy process. If the proxy simply returns the value to the
eBPF application, the eBPF application cannot distinguish
the returned file descriptor from that returned from a locally
executed system call. Therefore, the proxy duplicates the
file descriptor using the dup2 system call and creates a new
file descriptor whose value is larger than the original by
a pre-defined constant, e.g., 100. This file descriptor can
be handled by the shared library as that returned from the
forwarded system call.

4.3. Forwarding the bpf System Call

When an eBPF application issues the bpf system call,
which is used for controlling eBPF, the TeleBPF shared
library intercepts and forwards it. This system call supports
various eBPF commands, which are specified by the first
argument. Table 1 lists some of the eBPF commands. To
distinguish each eBPF command, the shared library transfers
a unique number assigned to each command, instead of the
number of the system call. Each command uses the specific
members of the bpf attr union, which is also specified
by the second argument. For efficiency, the shared library
transfers only the necessary members of the union. In the
target VM, the TeleBPF proxy creates a new bpf attr
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Figure 4. The details of the forwarding system calls.

union from the received data and issues the bpf system call
with it. The proxy transfers the return value from the system
call back to the shared library. Finally, the return value is
passed to the eBPF application.

For example, an eBPF application issues the bpf system
call with the BPF_ PROG_LOAD command to load an eBPF
program. The TeleBPF shared library intercepts this system
call and transfers the type, name, byte code, etc. of the eBPF
program, which are stored in the bpf attr union of the
argument, to the TeleBPF proxy. Then, it receives a file
descriptor for manipulating the loaded eBPF program as the
return value of the system call from the proxy. After that,
the eBPF application can issue the bpf system call with the
BPF RAW_TRACEPOINT OPEN command to attach an eBPF
program to a trace point in the kernel. The shared library
intercepts this system call and transfers the file descriptor of
the loaded eBPF program and the name of a trace point, e.g.,
sys_enter, to the proxy. As a result, the eBPF program is
executed whenever system calls are issued in the target VM.

An eBPF application can issue the bpf system calls to
manipulate BPF maps, which consist of keys and values
and are used to pass data between the eBPF application and
eBPF programs. When it creates a new BPF map using the
BPF MAP CREATE command, the TeleBPF shared library
transfers a map type and the sizes of the key and the
value, which are stored in the bpf attr union, to the
TeleBPF proxy. This information is necessary when the
shared library forwards map-related eBPF commands such
as BPF_MAP_LOOKUP ELEM and BPF_MAP_UPDATE ELEM,
but it is not specified in the arguments of these commands.
Therefore, both the shared library and the proxy save the
sizes of the key and the value on the creation of the BPF
map. Using the saved information, the shared library can
transfer the key and the value, and the proxy can receive
them.

4.4. Forwarding Event-controlling System Calls

There are various types of system calls for controlling
events. For example, the perf event open system call is
used to configure events for performance monitoring. As
the first argument, it takes the perf event attr structure,
which consists of the type of an event, the name and
address of a monitored function, the identifier of a trace
point, etc. When an eBPF application issues this system
call, the TeleBPF shared library transfers the members of
this structure to the TeleBPF proxy. Then, it receives a file
descriptor for manipulating the event as a return value.



TABLE 1. THE EXAMPLES OF THE EBPF COMMANDS.

eBPF command description

BPF_PROG_LOAD
BPF_BTF_LOAD
BPF_RAW_TRACEPOINT _OPEN
BPF_LINK CREATE
BPF_MAP_CREATE
BPF_MAP_LOOKUP_ELEM
BPF_MAP_UPDATE_ELEM
BPF_OBJ_GET INFO_BY FD

Load an eBPF program and return a file descriptor associated with it

Load BPF type format (BTF) metadata and return a file descriptor associated with it
Attach an eBPF program to a trace point and return a file descriptor managing the event
Attach an eBPF program to a file descriptor and return a file descriptor managing the link
Create a BPF map and return a file descriptor referring to it

Look up an element by key in a BPF map and return its value

Update an element (a key and a value) in a BPF map

Return information about the eBPF object specified by a file descriptor

TABLE 2. THE EXAMPLES OF THE IOCTL OPERATIONS FOR PERFORMANCE MONITORING.

ioctl operation description

PERF_EVENT_I10C_SET_BPF
PERF_EVENT_I0C_ENABLE
PERF_EVENT _I0C_DISABLE

Attach an eBPF program to the event of a kernel trace point
Enable an event specified by a file descriptor
Disable an event specified by a file descriptor

TABLE 3. THE EXAMPLES OF SPECIAL FILES USED BY EBPF.

special file

description

/sys/kernel/debug/tracing/*
/sys/devices/system/cpu/*
/sys/kernel/btf/vmlinux

Various information on events, e.g., trace point identifiers
Various information on CPUs, e.g., online CPUs
BTF information on the running kernel

The eBPF application issues the ioctl system call with
the returned file descriptor to attach an eBPF program to
that event and enable that event. Table 2 lists some of the
ioctl operations for performance monitoring. The TeleBPF
shared library intercepts this system call, but this system
call is used for various purposes. Therefore, the shared
library checks the value of the specified file descriptor and
forwards this system call only if the value is larger than the
pre-defined constant. This is possible because the TeleBPF
proxy adds the pre-defined constant to the value of a file
descriptor returned from the forwarded perf event open
system call. Since the ioctl system call can take an arbi-
trary type of data as the third argument, the shared library
transfers the data of an appropriate size according to the
operation specified by the second argument. For example,
a file descriptor of the integer type is specified for the
PERF _EVENT IOC SET BPF operation.

The epoll-related system calls are used to wait for events.
An eBPF application uses these system calls to wait for
eBPF programs to store information in ring buffers. When
it issues the epoll createl system call to create an epoll
instance, the TeleBPF shared library transfers the flag to
the proxy and receives a file descriptor for manipulating
the created instance. Then, the eBPF application issues the
epoll ctl system call to add a file descriptor used for
manipulating a ring buffer to the epoll instance. The shared
library transfers the two file descriptors for the epoll instance
and a ring buffer, and an event type to the proxy. After that,
the eBPF application repeats the epoll wait system call
to wait for epoll events. When the waiting events occur in
the target VM, the shared library receives the array of the
epoll event structures from the proxy. These system calls
can be used for non-eBPF events, but it is not possible to
identify the event type until the epoll ctl system call is
executed. In the current implementation, TeleBPF always

forwards the epoll-related system calls.

4.5. Forwarding File-related System Calls

Table 3 lists some of the special files used by eBPF
applications. There are two types of system calls for ac-
cessing eBPF-related files: one with a path name and one
with a file descriptor. For a system call with a path name,
the TeleBPF shared library first checks the path name. If the
path name is for special files used for obtaining information
on eBPF, e.g., events and CPUs, the shared library forwards
that system call. For a system call with a file descriptor, the
shared library checks the value of the file descriptor. If the
value is larger than the pre-defined constant, it forwards that
system call. For example, it forwards the read system call
with the file descriptor returned by opening an eBPF-related
file and receives the data in that file as well as the return
value. For a system call with both a path name and a file
descriptor for a directory, e.g., openat and newfsstat, the
shared library checks both.

4.6. Forwarding the mmap System Call

The TeleBPF shared library intercepts the mmap sys-
tem call to share ring buffers between an eBPF applica-
tion and eBPF programs. An eBPF application first ex-
ecutes the bpf system call with the BPF MAP CREATE
command to create a new ring buffer. Unlike a nor-
mal BPF map, it specifies BPF_MAP TYPE RINGBUF or
BPF_MAP_TYPE PERF EVENT ARRAY in the map type of
the bpf attr union. It receives a file descriptor for ma-
nipulating the created ring buffer via the TeleBPF shared
library. Then, the eBPF application issues the mmap system
call with that file descriptor to map the ring buffer created
in the kernel onto its address space, as illustrated in Fig. 5.
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Figure 5. Mapping the memory of the ring buffer by mmap.

The shared library forwards this system call only if the
value of the file descriptor is larger than the pre-defined
constant. In the target VM, the TeleBPF proxy maps the ring
buffer and returns its virtual address. However, the shared
library cannot access the ring buffer in the VM using that
virtual address because that address is of the TeleBPF proxy
process.

To address this issue, the TeleBPF shared library first
translates the received virtual address of the proxy into the
physical address of the VM. Then, it accesses the memory
of the VM using the physical address. To perform this
address translation, it needs the page tables of the TeleBPF
proxy process. Therefore, it obtains the physical address
of the page tables from the proxy when it connects to
the proxy. The proxy obtains that address using the kernel
module because the process cannot obtain information on
the page tables by itself. That kernel module accesses the
task struct structure used for the current process and
finds the mm_struct structure used for memory manage-
ment. Then, it translates the virtual address of the page tables
into a physical one and returns it to the proxy.

To enable the shared library to access the page tables and
the ring buffer in the memory of the VM, TeleBPF boots the
VM using the memory backed by a file called a memory file.
The shared library maps this memory file onto its address
space. Since a ring buffer consists of multiple memory
pages, the shared library translates the virtual address of
each page into a physical address. Next, it maps the region of
the memory file corresponding to each physical address onto
its address space so that all the regions become contiguous,
as illustrated in Fig. 6. Finally, it returns the virtual address
of the entire region to the eBPF application. For confidential
VMs, the memory of the page tables and the ring buffer
needs to be unencrypted by the OS in the VMs.

5. Experiments

We conducted several experiments to confirm that ex-
isting monitoring tools could collect information on the
system in a VM from the cloud side using TeleBPF. Also,
we examined the overhead of TeleBPF. For comparison, we
measured the performance of monitoring tools executed in-
side a VM without TeleBPF (in-VM execution). In addition,
we measured the performance when we used TeleBPF with
TCP/IP instead of Vsock. In this experiment, we used a
PC with an Intel Core i7-10700 processor and 64 GB of
memory. We ran Linux 5.15 and QEMU-KVM 8.0.0. We
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Figure 6. Mapping the ring buffer in a VM.
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Figure 7. The results of monitoring tools with TeleBPF.

assigned one virtual CPU and 1 GB of memory to a VM and
ran Linux 5.15. We used protobuf-c 1.3.3 [15] as Protocol
Buffer for C.

5.1. System Monitoring

First, we ran Microsoft Sysmon for Linux [16] using
TeleBPF. Sysmon is an eBPF application that monitors the
creation and termination of processes, file writes, network
connections, etc., and records those system events in a log
file. It is written in C using libbpf [12]. In this experiment,
we disabled network monitoring because TeleBPF has not
yet supported network-related system calls. When we ran
Sysmon outside the VM, Sysmon loaded its 19 eBPF pro-
grams into the VM. Fig. 7(a) is the log recorded on the cloud
side by Sysmon when we executed commands in the VM.
We confirmed that Sysmon with TeleBPF could monitor
system events inside the VM correctly.

Next, we ran the monitoring tool of disk access named
disksnoop using TeleBPF. This tool is a sample eBPF ap-
plication included in BPF Compiler Collection (BCC) [13]
and monitors the type, size, and latency of each disk access.
It is written in Python and runs using libbcc. When we ran
this monitoring tool outside the VM, the tool loaded one
eBPF program written in C into the VM. We confirmed that
TeleBPF enabled this tool to monitor disk access in the VM,
as shown in Fig. 7(b).
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As such, TeleBPF is applicable to various eBPF frame-
works, including libbpf and BCC.

5.2. Performance of Sysmon

To examine the overhead of TeleBPF, we measured the
time needed for Sysmon to perform initialization for eBPF
10 times. Fig. 8(a) shows the average initialization time and
its standard deviation for TeleBPF with Vsock and TCP/IP
and in-VM execution. From these results, it was shown that
TeleBPF could initialize the eBPF-related task 54% faster
than when we executed Sysmon in the VM. This is because
the virtualization overhead of running Sysmon is larger than
the overhead of forwarding system calls in TeleBPF. For
communication, TeleBPF with Vsock was 11% faster than
that with TCP/IP. The data transfer rate in forwarding system
calls was 978 KB/s for Vsock and 885 KB/s for TCP/IP.

Next, we examined the performance of collecting in-
formation from its eBPF programs after initialization. We
executed the 1s command in the VM and measured the time
needed for Sysmon to obtain that information from the ring
buffer. Fig. 8(b) shows the data collection time. Even in
this case, TeleBPF was 13% faster than in-VM execution.
This is because TeleBPF enables Sysmon to directly share
the ring buffer in the VM and can reduce the virtualization
overhead.

5.3. Performance of System Calls

To examine the performance of the system calls used
at initialization and data collection in Sysmon, we mea-
sured the execution time of eBPF-related system calls. For
the bpf system call, we measured the execution time for
each command. Sysmon executed only the bpf system call
with BPF_ MAP_ LOOKUP ELEM for data collection, while it
executed the others for initialization. It executed the bpf
system call with the BPF_ PROG_LOAD command 19 times
and loaded eBPF programs of various sizes. It also executed
that system call with the BPF_ BTF_ LOAD command 9 times
and loaded BPF type format (BTF) metadata of various
sizes. Therefore, we calculated the mean execution time for
each system call. We excluded the epoll wait system call
because its execution time was almost always 0.1 seconds,
which was the specified timeout.

Fig. 9 shows its average and standard deviation. The
execution time of most of the system calls was longer in
TeleBPF. In particular, the execution time of the mmap system
call was 15.8 ms longer because it took longer to share the
ring buffer in the VM. In contrast, the bpf system call with
the MAP_CREATE command was 11.3 ms shorter. This is
due to extreme outliers in in-VM execution. If we excluded
the outliers exceeding the 1.5x quartile range, the difference
shrank to 1.4 ms.

To examine the breakdown of the execution time of
system calls, we measured the communication time, the
execution time of the forwarded system calls, and the mis-
cellaneous time. The communication time is the time needed
to transfer the arguments of system calls and the results
between the TeleBPF shared library and the proxy using
Vsock. As shown in Fig. 10, the communication time was
75%, and the execution time of the forwarded system calls
was 23% on average. From this result, the communication
time was usually much longer than the others.

However, the execution time of the forwarded system
calls was the longest in the bpf system call with the
BPF _MAP CREATE and BPF__PROG LOAD commands and the
mmap system call. In particular, the mmap system call took
4.2x longer than in-VM execution. In this system call, the
miscellaneous time was more than 10%. This is because
it took much time to translate the virtual address of each
page in the ring buffer into a physical address and map the
regions of the memory file corresponding to all the physical
addresses. The size of the used ring buffer was 64 MB, i.e.,
16,384 pages.

Next, we examined the performance improvement of
the execution of system calls by using Vsock in TeleBPF.
Fig. 11 shows the comparison of the execution time of
system calls between Vsock and TCP/IP. Vsock made the
execution of system calls 10% faster on average. In particu-
lar, the performance was largely improved in the bpf system
call with the BPF_MAP LOOKUP ELEM commands.

5.4. Performance of Data Collection

eBPF applications usually collect information from
eBPF programs using BPF maps or ring buffers. For data
collection from BPF maps, they issue the bpf system call
with the BPF_ MAP_ LOOKUP _ELEM command. For data col-
lection from ring buffers, they do not issue any system calls.
To compare the performance of data collection, we measured
the time needed to collect information from a BPF map and
a ring buffer. Fig. 12(a) shows the collection time for a BPF
map. The collection time in TeleBPF was 199 s longer than
in in-VM execution. Using Vsock improved the performance
by 5x, compared with using TCP/IP. The collection time for
a ring buffer is shown in Fig. 12(b). TeleBPF was 1.8x faster
than in-VM execution. Both TeleBPF and in-VM execution
could enable obtaining information directly from the ring
buffer, but virtualization overhead degraded the performance
when the eBPF application ran in the VM.
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6. Related Work

BPFd [17] enables the applications developed with BPF
Compiler Collection (BCC) [13] to collect information from
a remote host. It was developed to use the functionalities of
BCC in Android devices where BCC cannot be installed.
It forwards BCC commands for loading eBPF programs
and creating BPF maps from a BCC application to the
BPFd daemon running in a remote host. Then, the BPFd
daemon executes the forwarded commands. BPFd is similar
to TeleBPF, but it forwards the function calls of the BCC
library. Therefore, it is subject to changes in the implemen-
tation of BCC. In contrast, TeleBPF forwards the invocation

Sysdig [18] is used as a monitoring agent in IBM
Cloud [2] and monitors the execution of system calls by
installing the kernel module in VMs. Recently, it achieves
the same function as eBPF. Using eBPF programs enables
more secure monitoring, while the monitoring performance
degrades. Therefore, Sysdig still provides the kernel module
as well. Even if it uses eBPF programs, users need to install
and update Sysdig in their VMs. In TeleBPF, the cloud side
can maintain the entire monitoring tools.

Several frameworks have been proposed to make the de-
velopment of monitoring tools with VMI easier. VMST [19]
enables users to run existing monitoring tools in a mon-
itoring VM and monitor the system in the target VM.
It automatically identifies the data needed for VMI and
redirects that data access to the memory of the target VM.
LLView [20] enables users to develop monitoring tools
using the source code of the OS. It converts the developed
programs at compile time so that they access the kernel data
in the memory of the target VM. Using the proc file system



developed with LLView, existing monitoring tools can be
run outside the target VM. However, these tools for VMI
cannot be used for confidential VMs.

SEVmonitor [21] enables intrusion detection systems
(IDS) to monitor the systems inside confidential VMs using
VMI. Since traditional VMI cannot obtain information from
the encrypted memory of a VM, SEVmonitor runs a small
agent inside the VM and obtains memory data from it. To
protect the agent inside the VM, SEVmonitor confines the
target system in a container and runs the agent in the OS
kernel. This system is a bit similar to TeleBPF, but eBPF
programs are much safer than the agent implemented in the
kernel.

Similarly, 00SEVen [22] securely runs an agent for VMI
using VM Privilege Levels (VMPLs) provided by AMD
SEV-SNP in a confidential VM. VMPLs enable a VM to
divide its address space into four levels. The agent runs
in the highest privilege called VMPLO, while the target
system runs in a lower privilege. The agent can obtain not
only the memory data but also the state of virtual CPU
registers of the target system. In addition, it supports event-
based analysis by trapping memory access and calls to
kernel functions. However, the agent cannot be dynamically
injected or updated, unlike TeleBPF. In addition, 0OSEVen
cannot be applied to confidential VMs with the other types
of TEEs such as Arm CCA [23] because it strongly relies
on VMPLs in SEV-SNP. TeleBPF does not depend on such
a specific hardware mechanism.

7. Conclusion

This paper proposed TeleBPF for safely and transpar-
ently monitoring VMs by dynamically injecting eBPF pro-
grams. When an eBPF application on the cloud side issues
eBPF-related system calls, the TeleBPF shared library inter-
cepts them. Then, it forwards them to the TeleBPF proxy
in the target VM using the VM-specific communication
mechanism. The proxy executes the forwarded system calls
and returns the results to the eBPF application. TeleBPF
enables the eBPF application to directly and efficiently
obtain information from the eBPF programs via the ring
buffers created in the target VM. The experimental results
show that TeleBPF can run monitoring tools faster than
traditional in-VM execution.

One of our future work is to support more eBPF-related
system calls and special files in TeleBPF. This is necessary
to run various existing monitoring tools developed as eBPF
applications. In addition, we are planning to protect the
TeleBPF proxy in a VM, e.g., by running it in the OS kernel.
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