Keyspector: Secure Monitoring of IoT Devices Using RISC-V Keystone

Takahito Iwano
Kyushu Institute of Technology
iwano @ksl.ci.kyutech.ac.jp

Abstract—The Internet of Things (IoT) devices have become
increasingly widespread in recent years. Since IoT devices tend
to suffer from attacks from the Internet, they need monitoring
using intrusion detection systems (IDS). However, IDS running
inside a target system can be easily disabled by intruders.
To address this issue, several approaches have been proposed
to securely execute IDS using trusted execution environments
(TEEs) such as Intel SGX and Arm TrustZone. Nevertheless,
existing approaches have several drawbacks, e.g., substantial
overhead for accessing the memory of the target system and too
high privileges to execute IDS. This paper proposes Keyspector
for enabling the secure execution of IDS using Keystone, which
is a TEE for RISC-V processors. Keyspector executes IDS
inside a secure execution environment called an enclave, which
has relatively low privileges. For efficient monitoring, it enables
only an enclave running IDS to share the memory of the target
system using the security monitor running below the system.
Using the shared memory, IDS can directly monitor the data
of the target system. We have implemented Keyspector in the
security monitor and the Eyrie runtime and confirmed that the
overhead of the IDS running in an enclave was 10%, compared
with the traditional IDS.

Index Terms—IoT, host-based IDS, TEE, RISC-V, Keystone

1. Introduction

The Internet of Things (IoT) has rapidly proliferated
in recent years. The number of IoT devices is expected to
increase to 40.6 billion by 2034 [1]. Since IoT devices, such
as home routers, printers, TVs, and cars, are connected to
servers or other devices via the Internet, they are exposed to
a high risk of attacks. In fact, between 2023 and 2024, the
number of detected malware targeting IoT devices increased
by 45% year over year. In addition, traffic attempting to de-
liver malware payloads to IoT devices rose by 12% [2]. This
indicates more active attacks to infect these devices. Ex-
amples of such attacks include distributed denial-of-service
(DDoS) attacks by exploiting compromised IoT devices [3],
[4], [5]. Incidents involving unauthorized modification of
programs running inside IoT devices also occur [3], [5],
(61, [71.

Since IoT devices tend to suffer from attacks from the
Internet, they need monitoring using intrusion detection

Kenichi Kourai
Kyushu Institute of Technology
kourai@csn.kyutech.ac.jp

systems (IDS). However, host-based IDS running inside
a target system can be easily disabled by intruders. To
address this issue, several approaches have been proposed to
securely execute IDS using trusted execution environments
(TEEs) provided by recent processors. For example, IDS can
be securely executed inside a protection domain called an
enclave in Intel SGX [8]. It monitors system information by
accessing the memory of the target system. Since enclaves
cannot directly access system memory, substantial overhead
is imposed to securely obtain memory data. Similarly, IDS
can be executed in the secure world of Arm TrustZone [9].
It can directly access the memory of the target system
running in the normal world, but the secure world has higher
privileges than necessary for IDS. Executing IDS in this
environment introduces potential risks.

To address these issues, this paper proposes Keyspec-
tor for enabling the secure execution of IDS using Key-
stone [10], which is a TEE for RISC-V processors. RISC-V
is an open-source instruction set architecture that has re-
cently gained attention in IoT devices. Like SGX, Keyspec-
tor executes IDS inside an enclave, which has relatively low
privileges. For efficient monitoring, it enables IDS to di-
rectly access the memory of the target system by sharing the
system memory with the enclave using a mechanism called
Physical Memory Protection (PMP). To prevent intruders
from eavesdropping on the system memory by creating
malicious enclaves, the security monitor underlying enclaves
allows an enclave to share the system memory only when
the identity of IDS running in the enclave is confirmed
by attestation. Then, a lightweight operating system (OS)
running inside the enclave maps the shared memory into
the address space of the IDS in a read-only manner. Using
the shared memory, the IDS can monitor data in the OS of
the target system.

We have implemented Keyspector in the security mon-
itor and the lightweight OS called the Eyrie runtime in
an enclave. Then, we have developed an IDS that collects
system information provided by the proc filesystem of the
target system. This IDS translates the virtual addresses of
the monitored OS data of the target system into physical
ones using the page tables located in the system memory. It
obtains the information on the page tables from the security
monitor. In addition, using LLView [11] ported to RISC-V,
the IDS can transparently access the OS data of the target
system using the source code of the OS. We conducted

several experiments using the developed IDS and confirmed
that it could collect the same system information as that
obtained inside the target system. We also measured the
collection time of system information and confirmed that
the overhead of the IDS running in an enclave was 10%,
compared with the traditional IDS running in the target
system.

The organization of this paper is as follows. Section 2
describes the monitoring of IoT devices using TEEs. Sec-
tion 3 proposes Keyspector for enabling the secure execution
of IDS using Keystone, and Section 4 explains its implemen-
tation. Section 5 presents the security analysis, and Section 6
shows the experimental results. Section 7 describes related
work, and Section 8 concludes this paper.

2. Monitoring of IoT Devices Using TEEs

Since IoT devices are connected to the Internet, they
are highly exposed to external attacks. In high-functionality
IoT devices equipped with the OS, such as home routers,
printers, TVs, and cars, it is unfortunately difficult to elim-
inate all the vulnerabilities that may become entry points
for intruders. Therefore, IDS is required to detect attacks
against 10T devices. IDS monitors abnormal behaviors of
the system inside an IoT device and notifies administrators
of possible intrusions. However, it is not easy to securely
execute host-based IDS inside a target system. Once the
system is compromised, IDS itself may be tampered with
by intruders. Although IDS can be protected by running it
inside the OS, even such IDS can be compromised if the
OS contains vulnerabilities.

To securely execute IDS, using trusted execution envi-
ronments (TEEs) provided by recent processors has been
proposed. One of the TEEs is Intel SGX [12], which en-
ables an application to create a protection domain called an
enclave. At the time of launching, SGX verifies the digital
signature of the application code, so that programs tampered
with by attackers cannot be executed. In addition, SGX
ensures the integrity of the enclave memory and thereby
prevents attackers from modifying the running code. Since
the enclave memory is encrypted, data inside the enclave
cannot be eavesdropped on by attackers. In this way, pro-
grams running inside an enclave can be securely executed
under the protection of the CPU without trusting even the
OS.

For example, SSdetector [8] prevents IDS from being
eavesdropped on or tampered with by executing IDS inside
an SGX enclave, as shown in Fig. 1(a). IDS monitors the
target system by accessing the OS data in the system mem-
ory. However, it cannot directly access the system memory
inside an enclave because an SGX enclave has the same
privileges as an application. Therefore, it invokes BIOS
running below the OS and securely obtains the memory data
of the OS in System Management Mode (SMM). It encrypts
and integrity-checks the memory data to prevent eavesdrop-
ping and tampering by the OS or other software. However,
the invocation of BIOS and the protection of data incur
significant overhead in obtaining memory data. In addition,

target system

enclave

application IDS u

oS | data
data
BIOS | SMM program |
(a) SGX
normal world E
(target system) ! secure world

application &
i trusted OS

H
(]

| secure monitor |
(b) TrustZone
Figure 1. IDS using two types of TEEs.

the entire target system is halted while the SMM program
is executed in BIOS. This performance impact on the target
system is also considerable. Furthermore, SGX is currently
supported only on server-grade Intel processors [13]. Thus,
it cannot be applied to IoT devices.

On the other hand, Arm processors are commonly used
in IoT devices and provide a TEE called TrustZone [14].
TrustZone provides two execution environments known as
worlds. The normal world runs a general-purpose OS such
as Android or Linux, while the secure world executes trusted
applications (TAs) that need to be isolated from the normal
world. A dedicated, trusted OS also runs in the secure world,
independently of the OS in the normal world. The transition
between the two worlds is managed by the secure monitor.
Since system resources are strictly partitioned by the secure
monitor, resources allocated to the secure world cannot be
accessed from the normal world.

As shown in Fig. 1(b), the ITZ library [9] enables TAs in
the secure world to access and analyze the system memory
in the normal world. Using this library, various IDS can be
developed. For example, IDS can perform integrity checks
by calculating the hash value of the kernel memory and
comparing it with that in a clean state, or by retrieving the
values of the kernel variables. However, the secure world
has higher privileges than necessary for IDS, such as access
to devices. If IDS is compromised, these elevated privileges
may be taken over by attackers. In fact, various vulnera-
bilities in TAs and the trusted OS have been reported [15].
Therefore, developing IDS in the secure world requires great
caution. Many devices do not allow users to execute custom
TAs.

enclave

target system .
Smode
M-mode | security monitor |

physical |
memory

target system | enclave |

Figure 2. The system architecture of Keyspector.

3. Keyspector

This paper proposes Keyspector for enabling the secure
execution of IDS using Keystone, which is a TEE for RISC-
V processors. RISC-V is an open-source instruction set
architecture that has recently gained attention and is ex-
pected to be widely adopted in IoT devices. Fig. 2 illustrates
the system architecture of Keyspector. Keyspector executes
IDS inside a Keystone enclave and prevents it from being
eavesdropped on or tampered with. Both the enclave and
the target system run on top of the security monitor and
are strictly isolated from each other. The security monitor
is software running in the highest privilege called M-mode.

The threat model of Keyspector is as follows. We as-
sume that RISC-V processors and the security monitor
are trusted and free of vulnerabilities. Also, we assume
that attackers cannot intrude into enclaves running IDS by
exploiting the vulnerabilities of software inside the enclaves.
As for attacks on the target system, we assume attackers
who attempt to compromise the system remotely over the
network. Attackers inside the target system can take root
privileges and control the OS and enclaves completely. They
can create new enclaves and terminate existing enclaves,
including ones running IDS. In addition, they can change
the scheduling of enclaves.

Keyspector enables IDS inside an enclave to directly
access the memory of the target system. In Keystone, the
security monitor uses a mechanism called Physical Memory
Protection (PMP) to logically isolate the memory of each
enclave from that of the target system. As a result, en-
claves are generally not allowed to access the target system
memory except for the specific regions used for exchanging
information. Keyspector modifies the accessible memory
range and permissions in PMP for an enclave so that the
enclave can share the entire target system memory. Then, a
lightweight OS called a runtime inside the enclave maps the
system memory into the memory address space of the IDS.

IDS monitors OS data in the target system by accessing
the mapped system memory. Since it refers to OS data by
virtual addresses, it needs to translate the virtual addresses
of OS data into physical ones. The mapped system memory
can be accessed by its base address and physical addresses.
This address translation is performed using the page tables

contained in the system memory. The address of the page
tables is stored in the CPU register in RISC-V and saved by
the security monitor at the time of switching from the target
system to the enclave. Therefore, IDS invokes the security
monitor via the runtime to obtain the register value. To allow
users to develop IDS without being aware of such address
translation, Keyspector embeds the translation logic into IDS
at compile time so that address translation is performed
transparently. Using this feature, IDS can be developed like
a kernel module by leveraging the source code of the OS.

The security monitor in Keyspector allows access to
the system memory only for the enclave in which IDS is
running. If all the enclaves were permitted to share the
system memory, the intruders who compromise the target
system could execute malicious enclaves to eavesdrop on
OS data in the system memory. In Keystone, the security
monitor calculates the hash value of the software running
inside the enclave. This hash value is used for remote
attestation to confirm that the software is not tampered with
at boot time. In Keyspector, the security monitor additionally
checks that the hash value matches that of a pre-registered
IDS and grants access to the system memory only for the
enclave running the pre-registered IDS. As an alternative, the
verifier at a remote host can check whether the hash value
matches that of the IDS during remote attestation. Then, it
notifies the security monitor of the result.

To detect attacks preventing the execution of IDS by
intruders inside the target system, the security monitor in-
spects the execution state of the enclave running IDS. In
Keyspector, the target system creates, runs, and terminates
enclaves. Therefore, if intruders gain administrative privi-
leges in the target system, they could forcibly terminate the
enclave and disable the IDS. Since it is difficult to prevent
this type of attack, the security monitor periodically checks
for the presence of the enclave running IDS and detects
the unauthorized termination of IDS. Even if intruders do
not terminate the enclave, they could prevent IDS from
being scheduled. To confirm that IDS is actively running, the
security monitor checks the execution time of the enclave
based on context switches between the target system and
the enclave.

Unlike SGX, Keyspector allows its enclave to directly
access the entire system memory. This eliminates the over-
head of encryption and integrity checks to protect the
retrieved memory data. In contrast, an SGX enclave can
access only the memory of the application in which it is
running. To access the system memory, it must rely on
external trusted components such as BIOS and perform
indirect memory access. Therefore, data protection mech-
anisms are required between the enclave and the external
component. Additionally, Keyspector enables the security
monitor to track the execution status of the enclave, whereas
SGX lacks programmable and trusted privileged software
to perform such monitoring. Compared with the secure
world in TrustZone, the enclave in Keyspector has much
lower privileges and can execute IDS more securely. We
assume that the enclave has no vulnerabilities, but even if
the enclave is compromised, attackers can only eavesdrop

on the system memory. In exchange for this advantage, the
enclave in Keyspector can be more easily disabled. However,
such attacks can be detected by the security monitor.

4. Implementation

We have implemented Keyspector in the security moni-
tor and the lightweight OS called the Eyrie runtime in RISC-
V Keystone.

4.1. Memory Sharing with Enclaves

PMP is a memory protection mechanism that restricts
software access to physical memory regions. The security
monitor can configure PMP using two types of registers:
pmpaddr and pmpcfg. The pmpaddr register is used to
define the base address and size of a memory region, which
is aligned to four-byte boundaries. The pmpcfg register is
used to specify access permissions such as read, write, and
execute for each memory region. There are 16 sets of these
two registers, depending on hardware implementation, and
the index number of each register determines its priority.
The security monitor assigns the highest priority for its own
memory region, while it assigns the lowest priority for the
memory region used for the untrusted host system. For an
enclave, it assigns the in-between priority for the memory
region. PMP checks are applied to all memory accesses
performed in S-mode for running the OS and U-mode for
running processes.

The security monitor re-configures PMP according to the
execution context by changing the above-mentioned two reg-
isters. In Keystone, when switching the context from the host
system to an enclave, the security monitor disables access to
the system memory and enables access only to the physical
memory assigned to the enclave. This provides an isolated
execution environment to the enclave. Strictly speaking, the
security monitor also enables the enclave to access only a
part of the system memory so that the enclave can receive
parameters from the host system and return results to it. This
context switch occurs when a process in the host system
launches an enclave or when it is rescheduled after being
scheduled out. Conversely, when switching the context from
the enclave back to the host system, the security monitor
enables access to the system memory and disables access
to the memory assigned to the enclave. This prevents the
untrusted host system from accessing the memory region of
the enclave. This context switch occurs when the enclave
terminates or when the process that invokes the enclave is
scheduled out.

In Keyspector, when switching the context from the host
system to the enclave running IDS, the security monitor
enables read access to the system memory, instead of com-
pletely disabling access, as shown in Fig. 3. This allows the
enclave to directly monitor the system memory. Since the
security monitor does not allow the enclave to modify the
system memory, the enclave does not affect the behavior
of the host system erroneously. When switching the context
from the enclave to the host system, the security monitor

| host system | | enclave |

| security monitor |

system

- system
running

|:| full access
l context switch T O read-only access

- no access

enclave

enclave
system

running

Figure 3. Switching the access permissions of physical memory.

enables all access to the system memory so that the host
system can access its memory without any restrictions.

To allow IDS in an enclave to access the system memory,
the Eyrie runtime maps the system memory onto the address
space of the IDS. When an enclave is launched, the loader is
first executed and then loads the runtime in the enclave. At
this stage, the loader maps the physical memory assigned to
the enclave onto the kernel address space of the runtime.
In Keyspector, the loader additionally maps the system
memory onto the process address space. Since only a single
application runs in each enclave, the process address space
is also only one. For this mapping, the loader sets up the
page tables of the process so that only read access in U-
mode is permitted. After that, the runtime loads IDS into
the process address space. Keyspector guarantees that the
mapped system memory does not overlap with the virtual
address ranges used by the IDS for the stack and heap.

4.2. Controlled Memory Sharing

To limit enclaves that can share the system memory,
Keyspector uses the hash value of software running inside
an enclave. When the hash value matches that of the pre-
registered IDS, the security monitor allows the enclave to
share the system memory. When an enclave is launched, the
security monitor calculates the hash values of the loader,
the runtime, and the application that are executed inside the
enclave, as shown in Fig. 4(a). These hash values are usually
used for remote attestation, which can detect tampering with
software running in the enclave. In Keyspector, the security
monitor additionally checks whether the calculated hash
values are the same as those for the pre-registered IDS. If
the legitimate IDS is executed in the enclave, the security
monitor sets a flag for permitting memory sharing to that
enclave. Upon a context switch from the host system to an
enclave, the security monitor enables the enclave to share
the system memory if the flag is set. Otherwise, the system
memory is not shared.

As an alternative approach, the attestation server used
in remote attestation can determine whether the hash value
matches that of a legitimate IDS. As shown in Fig. 4(b), the
security monitor first calculates the hash value of software
running inside an enclave and generates a signed report

enclave security monitor

IDS pre-registered
hash value hash value

- 1 [::udb
runtime pezeens ,[1<—>F
2. check

(a) using security monitor

ST77d6a575057)
e26e87425¢73¢

attestation server loT device

report host system enclave
B j RER DS |
* 1. edge call
0os | | runtime |
CHECK 4. report l 2. SBl call
pre-registered A

hash value

security

hash value
monitor 1250791

6. message _, 3-sign -

(b) using attestation server

Figure 4. The controlled sharing of the system memory with enclaves.

including the hash value. Then, it invokes the process that
launched the enclave in the host system using an edge call
mechanism and sends the signed report to the attestation
server via that process. The attestation server checks whether
the received hash value matches that for the pre-registered
IDS. Then, it generates a signed message including the
matching result and sends it back to the security monitor via
the host system. The security monitor verifies the received
message and sets the flag if the legitimate IDS is executed
in the enclave. One advantage of this method is that a new
hash value can be registered without modifying the security
monitor when the hash value changes, e.g., by the updates
of the IDS.

4.3. Accessing OS Data

IDS in an enclave obtains the kernel data of the host OS
and monitors the untrusted host system. To access OS data,
it translates the virtual address of the OS data into a physical
address. Then, it adds the obtained physical address to the
virtual address of the mapped system memory, so that it
can identify the virtual address of the OS data in the address
space of the IDS. This address translation can be done using
the page tables of the host system, which are stored in the
system memory. The physical address of the page tables is
held in the satp register in RISC-V, but this register contains
the address of the page tables used by the enclave during the
execution of the enclave. The value of the satp register used
by the host system is saved in the security monitor when
the context is switched from the host system to an enclave.
Therefore, IDS first invokes the runtime using a new system
call, as shown in Fig. 5. Then, the runtime invokes the
security monitor using a supervisor binary interface (SBI)
call. Finally, the security monitor returns the saved value of
the satp register to the IDS through the runtime.

Using the obtained physical address of the page tables,
IDS walks through the page tables to find the page table

host system enclave

| IDS |
* system call

page |

runtime |
table

SBI call
R ECEEEEE B ‘| SRS security monitor
value
[mope| asp | PPN

Figure 5. Obtaining the value of the satp register used by the target system.

63 62 61 60 54 53 10 9 8 7 6 5 4 3 2 1 0

N | PBMT | Reversed PPN RSW [D|A[G|U[X|W[R]|V

1 2 7 44 2 11 1 1 1 1 1 1

Figure 6. The internal structure of a PTE.

entry (PTE) corresponding to a given virtual address. Since
RISC-V supports multiple address translation modes, IDS
obtains the used mode from the MODE field of the satp
register. The current implementation supports Sv39 and
Sv57. Sv39 uses 39-bit virtual addresses and three-level
page tables, and Sv57 uses 57-bit virtual addresses and five-
level page tables. It is not difficult to support the other modes
such as Sv48 and Sv64.

Fig. 6 shows the internal structure of a PTE in RISC-
V. The R and X fields indicate that the page is readable
and executable, respectively. If IDS finds a non-leaf PTE
where both fields are not set, it examines the next-level PTE
indicated by the PPN field. If it reaches a leaf PTE where
either the R or X field is set, it calculates a physical address
using the PPN field and the lower 12 bits of the virtual
address as an offset. If IDS encounters a leaf PTE before
reaching the third level, it treats the page as a superpage of
1 GB or 2 MB, depending on the level. The result of the
address translation is cached so that the page tables are not
traversed again for virtual addresses that belong to the same

page.
4.4. Developed IDS

Keyspector uses the LLView framework [11] to enable
the transparent address translation of OS data. LLView is
a framework that allows developers to write programs for
analyzing OS data using the source code of the Linux ker-
nel. Specifically, developers can use kernel data structures,
global variables, inline functions, and macros defined in
the kernel header files. Thus, they can reuse kernel code
and write analysis programs like kernel modules. LLView
compiles the written program and inserts code for address
translation before each load instruction in the generated
LLVM intermediate representation. To support LLView in
cross-compilation for RISC-V, Keyspector specifies the 64-
bit RISC-V architecture in both clang and 11c and sets the
ABI to 1p64d in 1lc.

TABLE 1. THE PSEUDO FILES GENERATED BY THE DEVELOPED IDS.

file path system information

/proc/meminfo statistics about system memory usage
/proc/net/tcp information about TCP connections
/proc/stat kernel and system statistics

kernel version
maximum process ID

/proc/sys/kernel/osrelease
/proc/sys/kernel/pid_max

/proc/tty/drivers tty drivers loaded in the kernel
/proc/uptime uptime of the system and idle time
/proc/<PID>/auxv ELF interpreter information
/proc/<PID>/stat status information about the process
/proc/<PID>/status memory usage and status information

for_each_online_cpu(i) {
struct kernel_cpustat kcpustat;

kcpustat_cpu_fetch(&kcpustat, i);
idle = get_idle_time(&kcpustat, i);

Figure 7. The program for obtaining CPU times.

Using LLView, we have developed IDS that analyzes OS
data in the system memory to collect system information
provided by the proc filesystem in Linux. The proc filesys-
tem generates pseudo files that reflect the state of the Linux
kernel and provides information about processes, network
sockets, hardware, and system resources. Table 1 shows the
pseudo files generated by the developed IDS. Fig. 7 shows
a part of the program that collects per-CPU statistics. In
this program, the for each online cpu macro is used
to traverse all the CPUs. The information is retrieved from
the kernel cpustat structure.

5. Security Analysis

Using the memory isolation provided by PMP, Keyspec-
tor can protect running IDS from attackers in the target
system. It prevents attackers from tampering with and eaves-
dropping on IDS running in enclaves and OS data obtained
from the target system. The configuration of PMP can be
changed only by the security monitor running below the
target system. Before the execution of IDS, attackers could
inspect the binary files of IDS, but the files do not con-
tain any secrets such as private keys. Similarly, Keyspector
cannot prevent attackers from tampering with the files and
launching altered IDS using them. However, the security
monitor does not permit sharing the memory of the target
system with such illegitimate IDS. The hash value of IDS
does not match the pre-registered one stored in the security
monitor or the attestation server. Therefore, attackers cannot
eavesdrop on the memory of the target system via malicious
IDS.

Keyspector cannot prevent IDS in enclaves from being
disabled by attackers, but it can detect such attacks using the
security monitor. Attackers can terminate enclaves with the
processes that launched them using the functionality of the
host OS. For this attack, the security monitor periodically

TABLE 2. HARDWARE SPECIFICATIONS AND RUNNING SOFTWARE.

emulator real device
CPU 4 cores Freedom U740 SoC (4 cores)
memory 2 GB 16 GB
firmware OpenSBI 1.1 OpenSBI 1.1
oS Linux 6.1.32 Linux 6.1.43

checks the existence of the enclaves running IDS. If the
enclaves do not exist, Keyspector can detect the attack. Also,
attackers can prevent IDS from being scheduled because
the host OS manages process scheduling. For this attack,
the security monitor checks the interval between context
switches from the target system to the enclave. If the enclave
is not executed for a long time, Keyspector can detect the
attack. These checks cannot be avoided because the security
monitor is invoked at each timer interrupt.

Since IDS in enclaves monitors OS data in the target
system to detect attacks, attackers could hide attack traces
by altering OS data. This type of attack is effective for some
of the OS data, e.g., removing malicious processes from
the process list. However, the target system does not work
correctly for most of the OS data because the attack affects
the entire target system. Instead, attackers could replace the
page tables with the ones altered to point to fake OS data
just before a context switch to the enclave. As a result, IDS
fails to monitor actual OS data. Since the altered page tables
are referred to only by IDS in the enclave, the target system
still works correctly. This type of attack can be detected
by checking the used page tables in the security monitor
at timer interrupts. It is difficult for attackers to replace the
page tables just before the interrupt.

6. Experiments

To examine the effectiveness of Keyspector, we con-
ducted several experiments using the developed IDS. This
IDS collects system information necessary to generate ten
types of pseudo files in Table 1, which are provided by
the proc filesystem in Linux. For comparison, we used the
traditional method that reads the proc filesystem inside the
target system. In this experiment, we used both the RISC-V
emulator and the HiFive Unmatched Rev B board manu-
factured by SiFive [16]. For the emulator, we ran QEMU
6.2.0 on a PC with an Intel Core i7-14700 processor and 64
GB of memory. Table 2 shows the hardware specifications
and running software. The emulator and the real device
supported different address translation modes, specifically,
Sv57 and Sv39, respectively.

6.1. Capability Tests of IDS

We executed our IDS inside an enclave using Keyspector
and displayed the contents of the generated pseudo files for
confirmation. Fig. 8 shows a part of the displayed system
information. To confirm the correctness of the obtained
information, we compared this output with the information
obtained by reading the proc filesystem inside the target

. /get-procfs.ke

Verifying archive integrity... MD5 checksums are OK. All good.

Uncompressing Keystone Enclave Package

satp: a18d100000083288

satp.ppn: 83288

1 (init) S 0 1 1.0 -1 4194560 45 7456 24 38 2 20 118 133 20 0 1 0 1 2838528 58 1as4s744073709551

615 48038396181770240 48038396182698932 72057593016339952 0 0 © © © 524288 1 0 6 17 3 0 0

£803839137700657 48036398152716096 4803839618772091 2 79057593016340432. 72057593016340443 720579

93016340443 72057593016340461 ©

2 (kthreadd) S © 0 © 6 -1 2129384 6 6 0 0 0 0 © 6 20 0 1 0 1 0 0 18446744073769551615 6 6 0 0 0
)

]
-20 1010 06 18446744073709551615 6 0 6 0 ©

00
00000066060
00600000000

9238880 6 0 6 0 6 00 00 -201010 6 18446744073709551615 © 0 ©
0 e

000000080
000000-201010 0 18446744073709551615 6 @

]
1 0 © 18446744073709551615 0 0 0 0 © 0
7 (kworker/0:0-events) I

0000060 2147483647 061 0 0
8 (kworker/0:6H-events_highpri) I

000620010100 18446744073709551615
60000
00000
020010100 18446744073709
000
-20 1 0 10 0 18446744073709551615 © 0

6000 2147483647 0100 17 2 0
10 (mm_percpu_wg) I 2 6 6 6 -1 69238880 0
06000 2147483647 0 10017000000 00000

./get-procfs.ke
Verifying archive integrity... MP5 checksums are OK. All good.
Uncompressing Keystone Enclave Package

(a) unauthorized communication

./get-procfs.ke
Verifying archive integrity... MP5 checksums are OK. All good.
Uncompressing Keystone Encl Package

Detected unauthorized process name: dvrhelper.

(b) unauthorized process

Figure 9. The detection of possible infection with IoT malware.

system. This was performed immediately after the execu-
tion of our IDS so that the change in system states was
minimized. As a result, the output of our IDS matched the
information obtained in the target system. From this result,
it was confirmed that our IDS running in an enclave could
correctly obtain the system information.

Next, we examined whether our IDS in an enclave could
detect IoT malware. First, we ran a program that performed
communication to TCP port number 2323, which was used
by Mirai [3], in the target system. Then, our IDS obtained
the list of TCP connections and checked the destination port
numbers. As shown in Fig. 9(a), we confirmed that our
IDS could detect unauthorized communication and report
possible infection with the Mirai malware. Second, we ran
a program whose process name was dvrhelper, which was
used by Mukashi [17], a variant of Mirai, in the target
system. Then, our IDS obtained the status information of
all processes and checked the process names. Consequently,
it was confirmed that our IDS could detect the unauthorized
process executed by the Mukashi malware, as shown in
Fig. 9(b).

Finally, we slightly modified the IDS program so that
its hash value would differ from the one registered in the
security monitor and executed it inside the enclave. Fig. 10
shows the runtime output when this IDS accessed the target
system memory. From this result, it was confirmed that even
if an intruder executes an unauthorized program inside the
enclave, the information in the target system memory cannot
be eavesdropped.

[runtime] non-handlable interrupt/exception at ©x10108 on ©x2000cd20a@ (scause:
[runtlme] non-handlable lnterrupt/exceptlon at 0x10108 on 0x2000cd20a@ (scause

Figure 10. The execution results of an illegitimate IDS.

TABLE 3. THE NUMBER OF MONITORED OBJECTS.

emulator real device
processes 62 110
TCP connections 1 4
tty drivers 11 13

35

M traditional method
301 W Keyspector]

collection time (ms)
- - N N
o o o o

o

real device

emulator

Figure 11. The collection time of system information.

6.2. Collection Time of System Information

We measured the total time required for the IDS to
collect system information provided by the proc file system
using Keyspector and the traditional method. Table 3 shows
the number of monitored objects in the target system. The
number of processes includes kernel threads and the process
necessary for the IDS. In Keyspector, there also exists a
process for running the IDS in an enclave. We executed the
IDS more than ten times and calculated the average and
standard deviation of the collection time. Fig. 11 shows the
total collection time measured on the emulator and the real
device. Compared with the traditional method, Keyspector
reduced the collection time by a factor of 2 on the emulator.
In contrast, the collection time was 10% longer than the
traditional method on the real device.

To investigate the large difference between the emulator
and the real device, we measured the time required to
collect the system information necessary for generating each
pseudo file. Fig. 12 shows the breakdown of the collection
time. For process-related information, the collection time
is the sum of the time taken to collect information for
all processes. On the real device, Keyspector was faster
or slower for each pseudo file. For example, it was 31x
faster for pid-auxv, while it was 2.3x slower for tcp. In
contrast, Keyspector was faster for almost all pseudo files
on the emulator. In particular, it was much faster for process-
related information, e.g., 31x for pid-auxv and 3.5x for pid-
stat. This is the reason why Keyspector was faster than the
traditional method on the emulator in total.

Next, we examined why the collection time of process-
related information was much longer in the traditional
method only on the emulator. To estimate the overhead of
accessing the filesystem, we copied the files and directories

o

B traditional method
Il Keyspector

-
n
&)

o

collection time (ms)
~
(& 5

n
&)

(a) emulator

B traditional method
Il Keyspector

collection time (ms)

(b) real device

Figure 12. The breakdown of the collection time.

in the proc filesystem to the memory filesystem. Then,
we read the files from the memory filesystem, instead of
the proc filesystem. Fig. 13 shows the file access time for
each file in both filesystems. The difference is the time for
generating a pseudo file in the kernel. On the emulator, the
file access time occupied a large portion of the collection
time. In contrast, the portion was relatively small on the
real device, particularly in pid-stat, pid-status, and tcp.
This means that file access is slower on the emulator or that
the generation of pseudo files is slower on the real device.

Finally, we examined the reason why the collection time
of tcp was much longer in Keyspector only on the real
device. From Fig. 13, it was revealed that the generation
time of tcp was much longer. Therefore, we measured the
number of address translations performed by the IDS in
an enclave. Fig. 14 shows the results on the emulator and
the real devices. Most of the address translations hit in
the software cache and did not walk the page tables of
the target system. The number of address translations was
large in three pseudo files. For pid-stat and pid-status, the
collection time was proportional to the number of address
translations on both execution environments.

For tcp, the collection time was not so long on the
emulator, although the number of address translations was
also large. On the real device, in contrast, the collection
time was proportional to the number of address translations.
The number of TCP connections was 4x larger on the real
device, but its impact on the number of address translations
and the collection time was small. As a result of our deep

1251

@ proc filesystem
B memory filesystem

-
o

file access time (ms)
~
o 5

N
)

(a) emulator

proc filesystem
memory filesystem

file access time (ms)
e (2]

n

> Q2 & @ S > &
N o & N
¥ & E@# & & S
@ v 3 <

(b) real device

Figure 13. The file access time for each file in the traditional method.

number of translations (x 10%)

number of translations (x 10%)
~
e
T

25¢

Figure 14.

O.K & £ & L @
S &5 27 & & 4§
Q" . ¥
(\\z@ 6@ Q\b & K Q\b
(a) emulator

R F F T L E PP P
&5 FTEGE TG S
& &2 Q SR Q\es

(b) real device

The number of address translations in Keyspector.

3500 \’ ,,,‘.Ji—ol‘ 5 3500% o1& P
-
’6‘3000 7 9 ’63000 7% B
3 ,..."—.—I". % o © 0 ¢ o o0 ¢ o ©
@ 25005 ° 1 @ 2500
5 5
§2000 F 9 §2000 F !
@ @
21500 1 21500 1
£ £
S 1000 | —&— 4 threads (w/ IDS) | 51000 | —¢— 4 threads (w/IDS) |
5 —— 4 threads (w/o IDS) 5 —— 4 threads (w/o IDS)
S gook —— 3threads (w/IDS) |] S gk —&— 3threads (w/IDS) |]
—— 3threads (w/o IDS) —— 3 threads (w/o IDS)
|

o
o

o
o

| .
5 10 15 20
monitoring interval (sec)

(b) traditional method

. .

5 10 15 20
monitoring interval (sec)

(a) Keyspector

Figure 15. The impact on CPU performance (emulator).

investigation, we found that the total size of the hash tables
used to manage TCP connections in the kernel was 8x larger
on the real device. Since our IDS traversed the hash tables to
obtain the list of TCP connections, the number of address
translations increased by a factor of 8. From this result,
it was shown that the overhead of Keyspector came from
address translation performed in software on the real device.

6.3. Impact on System Performance

To examine the impact of the execution of IDS on system
performance, we executed the sysbench [18] benchmark in
the target system. Then, we measured the CPU performance
and the memory read performance while we periodically
ran the IDS using Keyspector and the traditional method.
In this experiment, we configured the IDS to collect system
information at intervals ranging from 0 to 20 seconds in 2-
second steps. For comparison, we measured the performance
without running the IDS. Since the emulator and the real de-
vice had four CPU cores, we executed sysbench using three
and four threads. The IDS could use one CPU core when
sysbench used three CPU cores, while the IDS competed
with sysbench for one CPU core when sysbench used four
CPU cores.

Figs. 15 and 16 show the benchmark results of the
CPU performance on the emulator and the real device,
respectively. On the emulator, even when sysbench used
only three CPU cores, the performance was degraded by
1.2-10% by executing the IDS. In contrast, the performance
was not degraded on the real device. This means that the
emulator has some performance impact on the system. When
sysbench used four CPU cores, performance degradation
was 0.7-22% and 3.6-21% in Keyspector on the emulator
and the real device, respectively. This overhead was reduced
by lowering the frequency of the execution of the IDS. In
contrast, the performance was degraded by 17% in the tradi-
tional method only when we executed the IDS continuously.
This means that the traditional method is more lightweight.

Figs. 17 and 18 show the benchmark results of the
memory read performance. The performance was almost the
same as the CPU performance, although the performance
impact was slightly different.

1750 1750

S1500F s e e o 518001]
3 - 3
@ 1250] @ 1250 1
=4 e e [=4
2 g
31000+ 1 31000+]
Q Q
2 750F 1 2 750} B
£ £
5 500 | —¢— 4threads (w/IDS) | S 500F| —¢— 4threads (w/IDS) |]
5 —— 4 threads (w/o IDS) 5 —— 4 threads (w/o IDS)
S o0k —&— 3threads (w/IDS) |] S o5k —é— 3threads (w/IDS) |]

—— 3 threads (w/o IDS) —— 3 threads (w/o IDS)

| |

o
o

o
o

| .
5 10 15 20
monitoring interval (sec)

(b) traditional method

. |
5 10 15 20
monitoring interval (sec)

(a) Keyspector

Figure 16. The impact on CPU performance (real device).

125F e 1o5[pmE—e—o—e—e oo

100i.—§—- Ch TR | 100~ o oo oo

75 b

50 1
——— 4 threads (w/ IDS)
—— 4 threads (w/o IDS)

25| —6— 3threads (w/ IDS)
—— 3 threads (w/o IDS)

50 1
——— 4 threads (w/ IDS)
—— 4 threads (w/o IDS)

25| —e— 3threads (w/ IDS)
—— 3 threads (w/o IDS)

performance (MiB/sec)
~
ol
T
.
performance (MiB/sec)

o

| | | | |
0 5 10 15 20 00 5 10 15 20
monitoring interval (sec) monitoring interval (sec)

(a) Keyspector (b) traditional method

Figure 17. The impact on memory read performance (emulator).

1500 1500 T

1250 1250

o

o

o
9
©
L

performance (MiB/sec;
~
al
o
T
L
performance (MiB/sec;
N 9
al o
o o
T
L L

<]

(=

o
T

(4]

[=

o
T

4 threads (w/ IDS)

o (4 threads (w/ IDS)
—— 4 threads (w/o IDS)
—o— E

4 threads gw/o IDS)
(

N

a

o
T

3 threads (w/ IDS) |
3 threads (w/o IDS)

n

a

o
T

3 threads (w/ IDS) |
3 threads (w/o IDS)

RIS

| | |
5 10 15 20
monitoring interval (sec)

(a) Keyspector

| | |
5 10 15 20
monitoring interval (sec)

(b) traditional method

Figure 18. The impact on memory read performance (real device).

o
o

o
o

7. Related Work

HyperGuard [19], SPECTRE [20], and HyperCheck [21]
achieve the secure execution of host-based IDS by using
System Management Mode (SMM), which is one of the op-
eration modes of Intel and AMD processors. These systems
trigger a System Management Interrupt (SMI) to invoke the
SMI handler in BIOS, which is a program executed in SMM.
The SMI handler executes the entire HIDS in HyperGuard
and SPECTRE. Therefore, BIOS must be updated whenever
HIDS is updated. In addition, the entire system is paused
while the SMI handler is executed. HyperCheck runs only
a network driver in SMM and transfers memory data to
HIDS running in a remote host. It can update HIDS easily

and minimize performance degradation caused by SMM, but
the security of HIDS itself is not guaranteed. In contrast,
Keyspector can easily update HIDS securely running in an
enclave and suppress performance degradation.

SSdetector [8] enables the secure execution of host-
based IDS by combining Intel SGX and SMM. It pre-
vents IDS from being eavesdropped on or tampered with
by executing IDS inside an SGX enclave. Since an SGX
enclave cannot directly access the system memory, IDS
obtains memory data by invoking the SMI handler via the
untrusted code outside the enclave. To prevent eavesdrop-
ping and tampering by the untrusted application code or
an untrusted OS, the enclave and the SMI handler need to
encrypt and integrity-check exchanged data. If the process
running the enclave is terminated, IDS in the enclave also
stops. To detect such attacks, a remote host periodically
sends heartbeats to IDS to confirm the correct execution. In
Keyspector, the enclave can securely and efficiently access
the system memory without data protection. The security
monitor can check the correct execution of IDS without
remote hosts.

S-NFV [22] and SEC-IDS [23] enable network-based
IDS to securely execute using SGX. S-NFV protects the
internal states of Snort [24] by storing them in an enclave.
These internal states are accessed only by the code running
in the same enclave. The code is invoked through a secure
API outside the enclave. This prevents attackers from eaves-
dropping on information such as per-flow network states.
SEC-IDS runs the entire Snort inside an enclave with almost
no modification. It uses the Graphene-SGX library OS [25]
to execute the existing IDS in an enclave. Although Snort
can be securely executed inside an enclave, it may fail
to detect attacks correctly if packets are tampered with
before being passed to Snort. Keyspector could also support
existing IDS by extending the lightweight OS running in an
enclave. Even network-based IDS could be executed in an
enclave by obtaining packets stored in the system memory.

The ITZ library [9] enables virtual machine introspection
(VMI) using Arm TrustZone. It treats the normal world
running the target system as a kind of virtual machine. From
the secure world, it monitors the memory of the normal
world using an API similar to LibVMI [26]. In the secure
world, a microkernel and a virtual machine monitor are
running. VMI tools using the ITZ library run on top of
the microkernel. Since the normal world cannot access the
secure world, intruders in the target system cannot disable
the VMI tools. However, the secure world has too high
privileges. Therefore, VMI tools can do more than just
monitor the system. In Keyspector, an enclave running IDS
has much lower privileges than the secure world, although
it is extended to be able to read the system memory.

Trusted Monitor [27] also executes IDS securely in the
secure world using TrustZone. The IDS uses CPU perfor-
mance counters to perform anomaly detection. It collects the
values of performance counters and uses a machine learning
model for anomaly detection. The model is trained with
the values obtained when the system is operating normally.
Trusted Monitor runs an agent in the normal world to

periodically invoke IDS in the secure world. If the agent
does not invoke IDS for a certain period, a watchdog timer
resets the entire system. To achieve IDS using performance
counters, the system is configured so that the normal world
cannot access the performance counters. This limits the
capability of the target system running in the normal world.
In Keyspector, IDS in an enclave could also use performance
counters to detect anomalies.

Elasticlave [28] is a memory model that enables flexible
memory sharing between enclaves and between an enclave
and the host system in RISC-V. Since Keystone does not
support direct memory sharing between enclaves, it is nec-
essary to exchange data through the host system using the
shared memory established between each enclave and the
host system. Elasticlave enables enclaves to directly share
memory with each other. It can assign different access
permissions for each enclave to access shared memory and
allows each enclave to change the assigned permissions if
necessary. In addition, it supports exclusive access to shared
memory. This memory model achieves a good balance
between security and flexibility. Elasticlave assumes that
enclaves and the host system share a part of their memory,
while Keyspector shares the entire system memory with an
enclave.

8. Conclusion

This paper proposes Keyspector for enabling the secure
execution of IDS using Keystone, which is a TEE for RISC-
V processors. Keyspector runs IDS in an enclave and allows
it to directly access the memory of the target system. This is
achieved by re-configuring access permissions in PMP using
the security monitor when context switches occur between
the target system and the enclave. To prevent information
leakage via malicious enclaves, Keyspector limits enclaves
that can share the system memory by extending the at-
testation mechanism. We have implemented Keyspector in
the security monitor and the Eyrie runtime and developed
the IDS that collects the OS data of the target system.
Experimental results show that Keyspector can efficiently
obtain system information provided by the proc filesystem
in Linux.

One of our future work is to implement a mechanism for
combining controlled memory sharing with remote attesta-
tion. We need to implement remote attestation in RISC-V
and extend it securely. Also, we would like to implement
the monitoring of the execution states of IDS in the security
monitor. Another direction is to collect other types of system
information provided by the proc filesystem in Linux and
detect various types of attacks. We are planning to imple-
ment the proc filesystem in the lightweight OS running in
an enclave and provide the collected system information to
IDS.

Acknowledgments

This work was supported by JST K Program Grant
Number JPMJKP24U4, Japan.

References

(1]

(2]

(3]

(4]

[3]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

Statista. Number of Internet of Things (IoT) connections worldwide
from 2022 to 2023, with forecasts from 2024 to 2034. [Online].
Available: https://www.statista.com/statistics/1183457/iot-connected-
devices-worldwide/

Zscaler Inc. Zscaler ThreatLabz 2024 Mobile, IoT, and OT Threat
Report. [Online]. Available: https://www.zscaler.com/campaign/
threatlabz-mobile-iot-ot-report

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallit-
sis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai
Botnet,” in Proc. 26th USENIX Security Symp., 2017, pp. 1093-1110.

H. Griffioen and C. Doerr, “Examining Mirai’s Battle over the In-
ternet of Things,” in Proc. ACM SIGSAC Conf. on Computer and
Communications Security, 2020, pp. 743-756.

O. Alrawi, C. Lever, K. Valakuzhy, R. Court, K. Snow, F. Monrose,
and M. Antonakakis, “The Circle Of Life: A Large-Scale Study of
The IoT Malware Lifecycle,” in Proc. 30th USENIX Security Symp.,
2021, pp. 3505-3522.

C. Miller and C. Valasek, “Remote Exploitation of an Unaltered
Passenger Vehicle,” Black Hat USA, 2015.

S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin, “Mea-
surement and Analysis of Hajime, a Peer-to-peer IoT Botnet,” in Proc.
26th Annual Network and Distributed System Security Symp., 2019.

Y. Koga and K. Kourai, “SSdetector: Secure and Manageable Host-
based IDS with SGX and SMM,” in Proc. 22nd IEEE Int. Conf.
on Trust, Security and Privacy in Computing and Communications,
2023, pp. 539-548.

M. Guerra, B. Taubmann, H. P. Reiser, S. Yalew, and M. Correia,
“Introspection for ARM TrustZone with the ITZ Library,” in Proc.
18th IEEE Int. Conf. on Software Security and Reliability, 2018, pp.
123-134.

D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song,
“Keystone: An Open Framework for Architecting Trusted Execution
Environments,” in Proc. 15th European Conf. Computer Systems,
2020.

Y. Ozaki, S. Kanamoto, H. Yamamoto, and K. Kourai, “Reliable and
Accurate Fault Detection with GPGPUs and LLVM,” in Proc. 16th
IEEE Int. Conf. on Cloud Computing, 2023, pp. 540-546.

F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative Instructions and
Software Model for Isolated Execution,” in Proc. 2nd Int. Workshop
on Hardware and Architectural Support for Security and Privacy,
2013.

Intel Corp. Intel Processors Supporting Intel SGX. [Online].
Available: https://www.intel.com/content/www/us/en/architecture-
and-technology/software- guard-extensions- processors.html

ARM Ltd., “ARM Security Technology — Building a Secure System
Using TrustZone Technology,” White Paper, 2009.

D. Cerdeira, J. Martins, N. Santos, and S. Pinto, “ReZone: Disarming
TrustZone with TEE Privilege Reduction,” in Proc. 31st USENIX
Security Symp., 2022, pp. 2261-2279.

SiFive Inc. HiFive Unmatched Rev B. [Online].
https://www.sifive.com/boards/hifive-unmatched-revb

Available:

Palo Alto Networks. New Mirai Variant Targets Zyxel Network-
Attached Storage Devices. [Online]. Available: https://unit42.
paloaltonetworks.com/new-mirai- variant-mukashi/

A. Kopytov. sysbench. [Online]. Available:

akopytov/sysbench

https://github.com/

J. Rutkowska and R. Wojtczuk, “Preventing and Detecting Xen Hy-
pervisor Subversions,” Black Hat USA, 2008.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

F. Zhang, K. Leach, K. Sun, and A. Stavrou, “SPECTRE: A De-
pendable Introspection Framework via System Management Mode,”
in Proc. 43rd Annual IEEE/IFIP Int. Conf. on Dependable Systems
and Networks, 2013, pp. 1-12.

F. Zhang, J. Wang, K. Sun, and A. Stavrou, “HyperCheck: A
Hardware-AssistedIntegrity Monitor,” IEEE Transactions on Depend-
able and Secure Computing, vol. 11, no. 4, pp. 332-344, 2014.

M. Shih, M. Kumar, T. Kim, and A. Gavrilovska, “S-NFV: Securing
NFV States by Using SGX,” in Proc. ACM Int. Workshop on Security
in Software Defined Networks & Network Function Virtualization,
2016, pp. 45-438.

D. Kuvaiskii, S. Chakrabarti, and M. Vij, “Snort Intrusion Detec-
tion System with Intel Software Guard Extension (Intel SGX),” in
arXiv:1802.00508, 2018.

M. Roesch, “Snort — Lightweight Intrusion Detection for Networks,”
in Proc. 13th USENIX Conf. on System Administration, 1999, pp.
229-238.

C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX,” in Proc. USENIX
Annual Technical Conf., 2017, pp. 645-658.

B. D. Payne, “Simplifying Virtual Machine Introspection Using Lib-
VMI,” Sandia National Laboratories, Tech. Rep., 2012.

C. Eichler, J. Rockl, B. Jung, R. Schlenk, T. Miiller, and T. Honig,
“Profiling with Trust: System Monitoring from Trusted Execution
Environments,” Design Automation for Embedded Systems, vol. 28,
no. 1, pp. 23-44, 2024.

J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, “Elasticlave:
An Efficient Memory Model for Enclaves,” in Proc. 31st USENIX
Security Symp., 2022, pp. 4111-4128.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.zscaler.com/campaign/threatlabz-mobile-iot-ot-report
https://www.zscaler.com/campaign/threatlabz-mobile-iot-ot-report
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions-processors.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions-processors.html
https://www.sifive.com/boards/hifive-unmatched-revb
https://unit42.paloaltonetworks.com/new-mirai-variant-mukashi/
https://unit42.paloaltonetworks.com/new-mirai-variant-mukashi/
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench

	Introduction
	Monitoring of IoT Devices Using TEEs
	Keyspector
	Implementation
	Memory Sharing with Enclaves
	Controlled Memory Sharing
	Accessing OS Data
	Developed IDS

	Security Analysis
	Experiments
	Capability Tests of IDS
	Collection Time of System Information
	Impact on System Performance

	Related Work
	Conclusion
	References

