Secure Privacy Control inside Clouds with AMD SEV and Nested Virtualization

Naoya Ando
Kyushu Institute of Technology
naoya@ksl.ci.kyutech.ac.jp

Abstract—The leakage of personal data from public clouds has
been a major issue in recent years. As cloud services become
increasingly complex, e.g., using microservices and multicloud,
personal data can be distributed to various services. However,
the details of data flow inside clouds are not disclosed to
users. Therefore, users cannot know how their personal data
is processed and stored. To regain control of personal data,
users need a privacy control mechanism for clouds, but the
mechanism provided by clouds cannot be trusted. This paper
proposes SEV-tracker for enabling secure privacy control inside
clouds using a processor-based trusted execution environment
(TEE). SEV-tracker injects a user hypervisor into a cloud
virtual machine (VM). Using nested virtualization, the user
hypervisor runs a cloud service in a user VM created on top
of it and tracks and controls the data flow of the service.
To mutually protect the user hypervisor and the cloud from
each other, SEV-tracker applies AMD SEV to both VMs. We
have implemented SEV-tracker using BitVisor as a lightweight
user hypervisor and unikernels as cloud services to mitigate
the overhead of nested virtualization. We conducted several
experiments and examined the effectiveness of SEV-tracker.

Index Terms—TEE, AMD SEV, VM, nested virtualization, data
flow

1. Introduction

Recent public clouds provide various services and in-
evitably deal with a huge amount of personal data. In
addition, they provide more and more complex services by
coordinating multiple services, e.g., using microservices and
multicloud. As a result, personal data can be distributed to
various services within a cloud and even across multiple
clouds. Only if one of the services has a vulnerability
or if there is one malicious cloud administrator, leakage
of personal data can occur. For example, information on
more than a hundred million customers leaked out from
Captial One by the misconfiguration of a web application
firewall [1]. Currently, end users have to use cloud services
with the risk of such information leakage.

Although clouds must obey regulations such as GDPR,
they do not disclose the details of how they internally pro-
cess personal data to users. Therefore, users usually cannot
know which cloud services their personal data is transferred

Kazuki Takiguchi
Kyushu Institute of Technology
takiguchi@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology
kourai@csn.kyutech.ac.jp

to. Even if personal data is transferred to unintended services
or leaked to attackers, users have no means to notice that.
To regain control of personal data from clouds, users need
a privacy control mechanism that allows them to track and
control data flow inside clouds. Using such a mechanism,
they could grasp the region of data distribution and the
data store. This can deter clouds from illegally transferring
personal data. Furthermore, they could prevent information
leakage in advance by limiting data flow. Such a privacy
control mechanism needs to run inside clouds, but users
cannot trust the mechanism provided by clouds.

This paper proposes SEV-tracker for enabling secure
privacy control inside clouds using a trusted execution en-
vironment (TEE), which is provided by recent processors.
SEV-tracker injects a user’s own hypervisor into a cloud’s
virtual machine (VM) used to provide a cloud service for
the user. Using nested virtualization [2], the injected user
hypervisor creates a user’s VM on top of it and runs a
cloud service in the VM. The privacy control mechanism
in the user hypervisor monitors the user VM and tracks
and controls the data flow of the cloud service. To protect
the privacy control mechanism from the cloud, SEV-tracker
encrypts the memory of the cloud VM using AMD Secure
Encrypted Virtualization (SEV). For mutual protection, it
also applies SEV to the user VM running in the cloud VM
using Nested SEV [3] and protects the cloud service from
the user hypervisor.

To mitigate the overhead of running a user VM in a
cloud VM with nested virtualization, SEV-tracker uses a
lightweight hypervisor and unikernels [4]. As a user hy-
pervisor, it uses BitVisor [5], which runs only one VM
and efficiently virtualizes only necessary device access. We
modified BitVisor to capture network packets of a user
VM and send communication logs to a user’s log servers.
SEV-tracker can visualize the communication logs to show
data flow intuitively. To run a cloud service as a unikernel,
SEV-tracker uses Unikraft [6], which enables developers to
construct a unikernel with minimum functionalities of the
operating system (OS) and runs only one application in a
VM. We modified Unikraft to support SEV and run on top of
BitVisor. We conducted several experiments and examined
the effectiveness of SEV-tracker.

The organization of this paper is as follows. Section 2
describes the necessity of a privacy control mechanism
for clouds. Section 3 proposes SEV-tracker for enabling

secure privacy control using SEV. Section 4 explains its
implementation, and Section 5 shows experimental results.
Section 6 describes related work, and Section 7 concludes
this paper.

2. Privacy Control in Clouds

Recent public clouds deal with a huge amount of per-
sonal data in various services provided to users. An example
of personal data is information that can identify and dis-
tinguish individuals. To protect personal data, regulations
such as GDPR have been established in many countries.
Since clouds must obey such regulations, unintended use of
personal data is strongly restricted. However, it is not easy
to prevent leakage of personal data from clouds because that
happens unexpectedly even if clouds make great efforts to
protect personal data.

One of the reasons for increasing information leakage
is that clouds provide more and more complex services.
In clouds, it is common to coordinate multiple services,
especially in microservice architectures. Microservices are
a method of developing software by dividing one complex
service into multiple smaller services. Since a cloud service
exchanges data between internal services, personal data can
be distributed to various services if one service processes
personal data. Furthermore, one cloud service can use sev-
eral services provided by multiple clouds. In this multicloud
deployment, personal data is transferred not only within a
cloud but also across clouds.

In public clouds, the detailed flow of personal data that
cloud services deal with is basically not disclosed to the
users. Usually, users cannot know which cloud services their
personal data is transferred to. They often cannot determine
in which data centers their personal data is stored around
the world. Hence, it is more difficult to control the flow of
personal data. Private clouds and government clouds can be
used to protect personal data. They can limit the flow of
personal data to within one organization, country, or region.
However, they inherently increase costs, compared to public
clouds. In addition, users cannot confirm whether the flow
of personal data is actually restricted as expected.

To regain control of personal data from clouds, a privacy
control mechanism is needed for public clouds. It would en-
able users to track and control the flow of their personal data
that cloud services deal with. Users could ask the privacy
control mechanism which cloud services their personal data
has been transferred to and which data centers it has been
stored in. As such, they could always grasp the region of
the distribution of their personal data and all the stores of
their personal data. This can deter clouds from transferring
personal data to unexpected regions. In addition, they could
limit data flow in advance to decrease the possibility of
information leakage. This allows users to use public clouds
as private clouds in a sense.

However, users cannot fully trust the privacy control
mechanism provided by public clouds themselves. This is
because users have no means of confirming that clouds’
privacy control mechanism tracks and controls personal data

cloud VM

user VM cloud VM

" & cloud
| wi cloud service > .
-1 service
user
privacy control || | —i»| hypervisor
mechanism —1

access

user
inject

-

N user
hypervisor

Figure 1: The system overview of SEV-tracker.

properly. Clouds can easily bypass their own privacy control
mechanism and transfer personal data to data collection
servers in secret. Even if cloud providers are trusted, insiders
such as malicious administrators can exist in clouds. In
fact, it is reported that 28% of cybercrimes are committed
by insiders [7] and that 35% of administrators have stolen
confidential information [8]. In addition, part of a cloud can
be compromised by external attackers. Such insiders and
attackers can easily disable the private control mechanism.

3. SEV-tracker

In this paper, we propose SEV-tracker for enabling se-
cure privacy control inside public clouds using a processor-
based trusted execution environment (TEE). Fig. 1 illustrates
the system overview of SEV-tracker. It is desirable to run
a user’s privacy control mechanism in the cloud hypervisor
included in the cloud infrastructure, but this is not realistic.
Therefore, a cloud provides a dedicated VM to run its ser-
vice, called a cloud VM, for each user. The cloud VM runs
a hypervisor injected by the user, called a user hypervisor,
using nested virtualization [2]. The user hypervisor creates a
VM, called a user VM, on top of it and runs a cloud service
in the VM. A privacy control mechanism runs in the user
hypervisor and tracks and controls the data flow of the cloud
service, e.g., network and disk access. The user accesses the
cloud service running in the user VM. If necessary, the cloud
service accesses other cloud services running on top of other
user hypervisors.

Using SEV-tracker, individual end users could inject
their own user hypervisors into clouds, but this is too costly.
Since at least one cloud VM is required per user, the number
of VMs would increase dramatically in clouds. Therefore,
we assume that end users can trust their organizations such
as their companies, universities, etc. Instead of end users,
the organization injects its own hypervisor and shares a
cloud service running on top of that user hypervisor among
its constituent members. Then, the members share the data
flow tracked by the privacy control mechanism for that
cloud service. Since the privacy control mechanism does
not expose personal data itself, privacy is kept among the
members. If end users cannot trust their organizations, they
may be able to rely on trusted third parties. They can use a
cloud service running on the user hypervisor injected by a
trusted third party. In any case, we believe that the cost is
much less than using private clouds.

In our threat model, we assume that a cloud and its
users do not trust each other. Therefore, an injected user
hypervisor and a cloud running the user hypervisor have
to be protected from each other inside the cloud. Thanks
to the isolation of a cloud VM, cloud infrastructure can
be protected from the user hypervisor. However, the user
hypervisor can suffer from attacks by the cloud because
cloud infrastructure has higher privileges than the user hy-
pervisor running in a cloud VM. In such a case, the cloud
can bypass the user’s privacy control mechanism and tamper
with tracking information. This makes it impossible to track
and control data properly. Similarly, the user hypervisor is
protected from a cloud service by the isolation of a user
VM. In contrast, the user hypervisor can eavesdrop on and
tamper with the data of the cloud service in a user VM. The
data includes not only the user’s but also the cloud’s.

SEV-tracker provides mutual protection by applying
AMD SEV to these two VMs. SEV is a security feature
of AMD EPYC processors. It transparently encrypts the
memory of a VM using a hardware key. SEV-ES also
encrypts the register state of the virtual CPUs, and SEV-
SNP checks the integrity of the memory. Thus, SEV prevents
even the hypervisor from accessing unencrypted data in a
VM. To protect a user hypervisor from cloud infrastructure,
SEV-tracker applies SEV to a cloud VM. The cloud cannot
disable the privacy control mechanism in the user hypervisor
or alter the policy used for privacy control. SEV-tracker
also applies SEV to a user VM running in the cloud VM
using Nested SEV [3] to protect a cloud service from
the user hypervisor. The user hypervisor cannot attack the
cloud service. Remote attestation for SEV can verify that
unmodified user hypervisor and cloud service run in cloud
and user VMs, respectively.

Since SEV-tracker uses nested virtualization to inject a
user hypervisor between cloud infrastructure and a cloud
service, it increases the overhead of the cloud service. To
mitigate this overhead, SEV-tracker uses a lightweight hy-
pervisor as a user hypervisor. A hypervisor usually supports
multiple VMs, but it is sufficient to support only one VM
because the user hypervisor can be specialized to monitor
only one cloud service. The user hypervisor can eliminate
the functionalities required to run multiple VMs. In addition,
it basically does not need to virtualize devices, although a
usual hypervisor needs device virtualization to share one de-
vice with multiple VMs. A user VM can directly access the
devices provided by a cloud VM using device passthrough.
Then, the user hypervisor virtualizes only devices that are
required to track and control data flow.

Furthermore, SEV-tracker runs a unikernel [4] as a cloud
service in a user VM to eliminate the overhead of the
general-purpose OS. A unikernel is a specialized appliance
constructed using a library OS. It links only necessary OS
functionalities provided as libraries to an application. Thus,
it efficiently runs in a single address space and requires less
memory. Thanks to minimal initialization, a unikernel can
also reduce the boot time. This is suitable for our usage of
running a cloud service per user. Using a unikernel makes
the overhead of a user VM close to that of an OS process.

SEV-tracker is expected to achieve the performance between
single-level virtualization and fully nested virtualization.

To enable users to track and control data flow, SEV-
tracker monitors all the communications of a cloud ser-
vice. Whenever a cloud service in a user VM sends or
receives a network packet, the user hypervisor captures it
and records its information in a communication log. If that
communication is not permitted by the user’s policy, the
privacy control mechanism in the user hypervisor drops that
packet. For example, the user can limit the communications
of the cloud service within one cloud. To examine the
communications performed by the cloud service, the user
can obtain the communication logs from the privacy control
mechanism. SEV-tracker visualizes data flow recorded in
the communication logs to show it to the user intuitively.
The obtainable information is coarse-grained due to the
protection of a cloud service, but it is useful for the user
to check the possibility of illegal data flow. In addition, it
can deter clouds from illegal data flow.

4. Implementation

We have implemented SEV-tracker using BitVisor as a
user hypervisor and Unikraft as a unikernel to run a cloud
service. BitVisor is a lightweight hypervisor and has no ca-
pabilities necessary to run multiple VMs. In SEV-tracker, it
runs in a cloud VM created on top of KVM and creates only
one user VM. It basically provides the virtual devices of the
cloud VM directly to the user VM using device passthrough.
If necessary, it can efficiently virtualize only part of device
access using a para-passthrough mechanism. Unikraft is
a unikernel development kit to facilitate the development
of applications using a library OS. Developers select and
compile only libraries that provide the OS functionalities
needed to run their applications. In SEV-tracker, a unikernel
runs in a user VM on top of BitVisor.

We added SEV support to BitVisor and Unikraft. In
addition, we addressed several issues to run Unikraft on
BitVisor.

4.1. Fast Deployment of Cloud Services

To execute an injected BitVisor into a cloud VM, the
user creates a disk image for BitVisor. The disk image
contains the boot loader needed to boot BitVisor in UEFI
and the ELF binary of BitVisor. In addition, it contains a
UEFI shell script to automatically boot BitVisor and a cloud
service. The user transfers the created disk image to a server
in a cloud when he uses a cloud service. If the cloud service
accesses other services in the same cloud or different clouds,
the cloud server forwards the disk image to other cloud
servers recursively.

Fig. 2 illustrates the detailed system architecture of SEV-
tracker. SEV-tracker requires KVM that supports SEV as
cloud infrastructure. It uses OVMF as UEFI BIOS, which
is provided by a cloud. A cloud VM uses both a user’s disk
image for BitVisor and the disk image for booting a cloud
service, which is provided by a cloud. The latter disk image

cloud VM

user VM

boot
Unikraft application

>| bitvisor
disk
image

boot

|
| OVMF [UEFI shell |
Linux m

Figure 2: The system architecture of SEV-tracker.

user .
image

contains a Unikraft application and a UEFI shell script for
its automatic boot. The running cloud service uses the host
filesystem in a cloud. SEV-tracker confirms that OVMEF,
BitVisor, and the cloud service are legitimately booted by
using the remote attestation of SEV.

SEV-tracker creates a cloud VM on KVM and runs
OVMF in the VM when it boots a per-user cloud service.
After OVMF executes the UEFI shell, the UEFI shell exe-
cutes the shell script contained in the user’s disk image and
automatically boots BitVisor. This shell script first executes
the boot loader of BitVisor as a UEFI application. The
boot loader boots BitVisor in the cloud VM, and BitVisor
creates a user VM in the cloud VM. After that, the control
is returned to the UEFI shell, but the UEFI shell is executed
in the execution context of the user VM. Next, SEV-tracker
boots a cloud service in the user VM. To run the cloud
service provided by a cloud, the user’s UEFI shell script
invokes the UEFI shell script contained in the cloud’s disk
image.

4.2. Tracking and Controlling Communication

In SEV-tracker, the injected BitVisor captures all the
packets sent to and received from a user VM and analyzes
packets to track and control the communication. To capture
packets, SEV-tracker uses the pass module of BitVisor. The
pass module allows a Unikraft application in the user VM
to directly use the virtual NICs of the cloud VM, whereas it
enables BitVisor to hook access to the virtual NICs. BitVisor
analyzes the Ethernet, IP, TCP, and UDP headers in a packet
and collects information on the source and destination IP
addresses and port numbers. If the collected information
exactly matches the previous one, it just forwards that
packet. If the user’s policy denies forwarding that packet,
BitVisor discards it.

BitVisor sends the recorded communication log to the
user’s log server using the syslog protocol with UDP. SEV-
tracker boots a log server in another cloud VM protected
by SEV. BitVisor creates UDP packets using the IP address
of the log server and the MAC address of the log server
or the gateway. Then, it directly passes the packets to the
virtual NIC. Note that BitVisor does not use the network
stack provided by IwIP [9] included in it because the pass

module does not enable IwIP. BitVisor adds a sequence
number to the communication log to detect packet drop
by the cloud. It encrypts the log using AES to prevent
the cloud from eavesdropping on it. Also, it calculates a
message authentication code (MAC) and sends it with the
log.

When the log server receives the encrypted communi-
cation log, it decrypts that log and checks the sequence
number. If the sequence number is not contiguous, it records
that the cloud may discard communication logs. Note that
the cloud did not always discard it because UDP packets can
be dropped or received out of order. Next, the log server re-
calculates a MAC from the received communication log and
compares it with the received MAC. If the two MACs do
not match, it records that the communication log may be
tampered with. If the integrity of the communication log is
preserved, the log server saves the log in its database.

4.3. Visualizing Data Flow

SEV-tracker visualizes the communication logs and
shows data flow inside clouds to the user intuitively. It uses
net-glimpse [10] to visualize the communication between
cloud services. Net-glimpse is a tool to obtain packets from
a NIC in real time and visually shows communication in a
browser. It shows a host as a node with an IP address and
packet sending and receiving as an arrow. If already-shown
nodes send or receive packets again, net-glimpse emphasizes
the nodes. It shows the protocol name or port number on an
arrow.

However, SEV-tracker cannot use net-glimpse as it is be-
cause communication logs do not contain the entire packets
and are obtained from log servers instead of a NIC. There-
fore, SEV-tracker creates a TAP device as an alternative
to a NIC. TAP is a device that can simulate an Ethernet
device and manipulate the data link layer. SEV-tracker re-
constructs a packet header from the IP address, port number,
and protocol number contained in communication logs and
generates an Ethernet frame. It fills arbitrary values in the
other fields such as the MAC address. Then, it writes the
generated Ethernet frame to the TAP device. Consequently,
net-glimpse can capture the packet from the device and
visualize communication by that packet.

SEV-tracker supports three modes of data-flow visual-
ization. It can visualize communication logs after the user
finishes using cloud services. Using this mode, the user
can grasp the overview of the communication performed
by the cloud services by showing information at once. If
SEV-tracker shows communication information one by one,
the user can grasp the data flow of the cloud services
more easily. In addition, SEV-tracker can periodically collect
communication logs from log servers and visualize them.
This allows the user to grasp data flow in near real time.

S. Experiments

We conducted several experiments to examine the ef-
fectiveness of SEV-tracker. First, we confirmed whether the

TABLE 1: The used cloud servers.

host 1 host 2
CPU AMD EPYC 7402P AMD EPYC 7262
memory 256 GB 128 GB
NIC Broadcom 57416
oS Linux 5.4
hypervisor QEMU-KVM 4.2.1

user could easily grasp data flow in a cloud by visualization.
Then, we inspected the performance of SEV-tracker. For
cloud servers, we used two hosts described in Table 1. We
created one cloud VM per host and assigned one virtual
CPU, 400 MB of memory, and a virtual e1000 NIC to
each cloud VM. In a cloud VM, we ran BitVisor as a user
hypervisor. We created one user VM in a cloud VM and ran
Unikraft 0.15 as a guest OS. For comparison, we ran KVM
in Linux 5.4 and QEMU-KVM 4.2.1 as a user hypervisor in
a cloud VM and Linux 5.4 as a guest OS in a user VM. In
this case, we assigned 4 GB of memory to a cloud VM and
400 MB of memory to a user VM. Due to the instability
of our implementation, we applied SEV to cloud and user
VMs only for the measurement of the deployment time.

5.1. Visualization of Data Flow

We have developed a cloud service as a web application
using the Flask web application framework. Using SEV-
tracker, we ran the cloud service on the two servers. The
two cloud services communicated with each other. The user
accessed cloud service 1 on host 1 from the client PC using
HTTPS. Cloud service 1 first accessed a DNS server for
name resolution and then accessed cloud service 2 on host 2
using HTTPS. Cloud service 2 accessed an external service
using HTTPS. We assumed that this communication with
the external service was unintended. In this experiment, we
applied SEV-tracker only to the two cloud services. We ran
a log server on each host and obtained communication logs
from the log servers.

Fig. 3 shows the visualized data flow of the cloud
services. For ease of understanding, we added the roles of
the hosts using red labels. We confirmed that the obtained
data flow matched the actual data flow. Using this data
flow, the user could detect illegal communication with the
external service. Note that the communication logs for the
DNS server and the external service may be different from
actual communication because the cloud can change the
destinations after BitVisor records those logs. To guarantee
the correctness of the logs, we need to apply SEV-tracker to
those services as well and crosscheck the logs of both the
source and destination.

5.2. Performance

We measured the time needed to deploy the developed
cloud service. In this experiment, we defined the deployment
time as the time until the network in the user VM was
activated. For comparison, we measured the deployment

DNS server
192.1@1.100

DS
service 1

external service 192. .1.50

service 2

Figure 3: The visualized data flow of cloud services.

150 150 T T T

Il disk transfer —4— SEV-tracker
Il boot b 1251 —¢— KVM+Linux

-

n

o
T

n

time (sec)
N 9
o o
T T
L

throughput (req/s)
~
o
L

o
o
T

251

SEV- KVM-+ 0 1 2 3 4
tracker Linux accessed data per page (KB)

(a) Deployment time (b) Service performance

Figure 4: The performance of SEV-tracker.

time when transferring a disk image for KVM and booting
KVM and Linux. Fig. 4(a) shows the deployment time
and its breakdown. The deployment time was 4.0 seconds
in SEV-tracker. It took 0.6 seconds to transfer the disk
image and 3.4 seconds to boot BitVisor and the Unikraft
application. SEV-tracker could deploy the cloud service 22x
faster than the combination of KVM and Linux. In more
detail, SEV-tracker could transfer the disk image 49x faster
and boot the cloud service 18x faster. When we used KVM
and Linux, the transfer time increased because the size of
the disk image became 328x larger. The increase in boot
time was caused by booting general-purpose Linux in both
cloud and user VMs.

Next, we measured the performance of cloud services
using SEV-tracker. We used the cloud service that simulated
big data analysis, which processed requests using a large
amount of data. This cloud service allocated a large amount
of memory per HTTP request, accessed it, and released
it. Fig. 4(b) shows the throughput when the cloud service
allocated 100 MB of memory and changed the data size
accessed per page. SEV-tracker always outperformed the
combination of KVM and Linux, whereas its performance
degraded gradually when the accessed data size increased.
In Linux, the performance was slightly affected by the ac-
cessed data size. This is because the impact of the accessed
data size was relatively small because heavyweight memory
swaps and page faults were bottlenecks.

6. Related Work

Several monitoring systems have been proposed using
Intel SGX, another popular TEE. SGX is a security feature
of Intel processors and enables a program to be securely ex-
ecuted in a protection domain called an enclave. Ryoan [11]
creates a sandbox with Google NaCl inside an SGX enclave
and runs a cloud service in it. NaCl checks the code executed
in a sandbox and performs the runtime check of its behavior.
Similarly, AccTEE [12] uses WebAssembly to create a
sandbox in an SGX enclave. Like NaCl, WebAssembly can
confine a cloud service to a sandbox and execute it securely.
Unlike Ryoan and AccTEE, SEV-tracker creates a sandbox
with a VM created in an SEV-enabled VM.

Nested enclave [13] extends SGX hardware to enable
the creation of inner enclaves in an outer enclave. An outer
enclave cannot access its inner enclaves, whereas inner
enclaves can access their outer enclave. Inner enclaves are
isolated from each other. Since an inner enclave needs to
invoke its outer enclave to perform I/O, the outer enclave
can monitor the data flow of a cloud service running in the
inner enclave. Unlike SEV-tracker, the monitoring system
is not protected from the cloud service because an inner
enclave can access the memory of its outer enclave.

CloudVisor [14] uses nested virtualization to deploy
the security monitor below cloud infrastructure to protect
VMs from cloud operators. The security monitor restricts
access to VMs by the cloud hypervisor. It also protects the
virtual disks of VMs by encryption and integrity checking.
If users can inject their security monitor into clouds, they
could easily monitor the data flow of cloud services in
VMs. However, that is not acceptable to clouds because the
security monitor has too high privileges. In SEV-tracker, an
injected user hypervisor is confined to a cloud VM.

Xen-Blanket [15] runs a user hypervisor in a cloud VM
with nested virtualization to enable the user to migrate a user
VM on top of it across clouds. To reduce the overhead of
network communication in a user VM, it uses a paravirtual
network driver in the host OS of a cloud VM and efficiently
accesses the back-end driver running in the host OS un-
derlying the cloud VM. This mechanism achieves network
throughput comparable to single-level virtualization. Since
Xen-Blanket does not need to modify cloud infrastructure,
it can be used in existing clouds. SEV-tracker is also ap-
plicable to existing clouds if cloud infrastructure supports
SEV for cloud and user VMs.

7. Conclusion

This paper proposes SEV-tracker for enabling secure
privacy control inside clouds by protecting VMs using SEV.
Using a user hypervisor injected into a cloud VM, SEV-
tracker allows the user to securely track and control the
data flow of a cloud service. To mitigate the overhead of
nested virtualization, SEV-tracker uses a lightweight hyper-
visor as a user hypervisor and unikernels for running cloud
services. We have implemented SEV-tracker using BitVisor
and Unikraft and examined its capability and performance.

One of our future work is to examine the performance
of SEV-tracker using SEV-enabled VMs. We need to make
SEV support for BitVisor and Unikraft more stable. Then,
we are planning to run various microservices and multicloud
services and track and control their data flow. In addition,
it is necessary to visualize the data flow of cloud services
more intuitively. Also, it is needed to track and control other
types of data flows such as disk access.

Acknowledgments

This work was supported by JST, CREST Grant Number
JPMICR21M4, Japan.

References

[1] Capital One. (2019) Information on the Capital One Cyber Incident.
[Online]. Available: https://www.capitalone.com/digital/facts2019/

[2] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,
A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour, “The Tur-
tles Project: Design and Implementation of Nested Virtualization,” in
Proc. USENIX Conf. Operating Systems Design and Implementation,
2010, pp. 423-436.

[3] K. Takiguchi and K. Kourai, “Protecting Nested VMs with AMD
SEV,” Poster at ACM SIGOPS Asia-Pacific Workshop on Systems,
2024.

[4] A.Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library
Operating Systems for the Cloud,” in Proc. Int. Conf. Architectural
Support for Programming Languages and Operating Systems, 2013,
pp. 461-472.

[5] T. Shinagawa, S. Hasegawa, T. Horie, Y. Oyama, S. Chiba, H. Eiraku,
K. Tanimoto, M. Hirano, E. Kawai, Y. Shinjo, K. Omote, K. Kourai,
K. Kono, and K. Kato., “A Thin Hypervisor for Enforcing I/O Device
Security,” in Proc. Int. Conf. Virtual Execution Environments, 2009,
pp. 121-130.

[6] S. Kuenzer, V. Badoiu, H. Lefeuvre, S. Santhanam, A. Jung, G. Gain,
C. Soldani, C. Lupu, S. Teodorescu, C. Raducanu, C. Banu, L. Mathy,
R. Deaconescu, C. Raiciu, and F. Huici, “Unikraft: Fast, Specialized
Unikernels the Easy Way,” in Proc. European Conf. Computer Sys-
tems, 2021, pp. 376-394.

[71 PwC, “US Cybercrime: Rising Risk, Reduced Readliness,” PwC,
Tech. Rep., 2014.

[8] CyberArk Software, “Global IT Security Service,” CyberArk Soft-
ware, Tech. Rep., 2009.

[91 A. Dunkels. IWIP — A Lightweight TCP/IP Stack. [Online]. Available:
https://savannah.nongnu.org/projects/Iwip/

[10] K. Lange. net-glimpse. [Online]. Available: https://github.com/
kristian-lange/net- glimpse

[11] T.Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “A Distributed Sand-
box for Untrusted Computation on Secret Data,” in Proc. USENIX
Symp. Operating Systems Design and Implementation, 2016, pp. 533—
549.

[12] D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza, “AccTEE: A
WebAssembly-based Two-way Sandbox for Trusted Resource Ac-
counting,” in Proc. Int. Middleware Conf., 2019, pp. 123-135.

[13] J. Park, N. Kang, T. Kim, Y. Kwon, and J. Huh, “Nested Enclave:
Supporting Fine-grained Hierarchical Isolation with SGX,” in Proc.
ACM/IEEE Annual Int. Symp. Computer Architecture, 2020, pp. 776—
789.

[14] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor: Retrofitting
Protection of Virtual Machines in Multitenant Cloud with Nested
Virtualization,” in Proc. ACM Symp. Operating Systems Principles,
2011, pp. 203-216.

[15] D. Williams, H. Jamjoom, and H. Weatherspoon, “The Xen-Blanket:
Virtualize Once, Run Everywhere,” in Proc. ACM European Conf.
Computer Systems, 2012, pp. 113-126.

