
Secure Monitoring of Confidential VMs with Isolated Agents
Tomoharu Nono

Kyushu Institute of Technology
Iizuka, Fukuoka, Japan

nono@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

Iizuka, Fukuoka, Japan
kourai@csn.kyutech.ac.jp

Abstract
To prevent insiders from eavesdropping on sensitive information
in virtual machines (VMs), recent clouds provide confidential VMs,
whose memory is transparently encrypted. Since even confiden-
tial VMs cannot protect data from intruders inside them, it is still
necessary to use intrusion detection systems (IDS). IDS offload-
ing is used to run host-based IDS outside VMs and prevent IDS
from being disabled by intruders. However, offloaded IDS cannot
monitor information in the memory of confidential VMs due to
memory encryption. This paper proposes SEVmonitor for enabling
IDS offloading by running agents inside confidential VMs. Offloaded
IDS running in another confidential VM securely obtains memory
data from the agent in the target VM. To enhance the security of
the agent, SEVmonitor confines a target system in an isolated exe-
cution environment created in the target VM and runs the agent
outside it. It supports two types of isolated execution environments,
a container and an inner VM, to take various tradeoffs. We have
implemented SEVmonitor using KVM, Linux, BitVisor, and Xen,
and examined monitoring and system performance.

CCS Concepts
• Security and privacy→ Virtualization and security.

Keywords
virtual machine, trusted execution environment, AMD SEV, nested
virtualization, VM introspection, intrusion detection system, agent

ACM Reference Format:
Tomoharu Nono and Kenichi Kourai. 2025. Secure Monitoring of Confi-
dential VMs with Isolated Agents. In 2025 IEEE/ACM 18th International
Conference on Utility and Cloud Computing (UCC ’25), December 1–4, 2025,
Nantes, France. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3773274.3774273

1 Introduction
Infrastructure-as-a-Service (IaaS) clouds are widely used and pro-
vide virtual machines (VMs) to users. As users deal with sensitive
information in VMs, eavesdropping on VMs by cloud insiders be-
comes a significant risk. To protect VMs from insiders, recent IaaS
clouds provide confidential VMs, e.g., in Amazon Web Services [2],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UCC ’25, Nantes, France
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2285-1/2025/12
https://doi.org/10.1145/3773274.3774273

Google Cloud [16], and Microsoft Azure [28]. The memory of con-
fidential VMs is transparently encrypted by trusted execution envi-
ronments (TEEs), e.g., AMD SEV [1] and Intel TDX [20], provided
by processors. It is decrypted only when VMs access memory. Us-
ing confidential VMs, even hypervisors that manage VMs cannot
access data in the memory of the VMs.

Due to such characteristics of confidential VMs, protection by
memory encryption is not effective if attackers intrude into VMs.
To prevent intruders from eavesdropping on sensitive information
inside VMs, it is still necessary to monitor the systems in the VMs
using intrusion detection systems (IDS). A technique called IDS
offloading with VM introspection (VMI) [12] is used so that IDS
is not disabled by intruders. This technique runs IDS outside VMs
and monitors the systems in the VMs by analyzing the memory of
the VMs. However, IDS offloading cannot be used for confidential
VMs because offloaded IDS cannot access the encrypted memory
of the VMs. If the systems in the VMs naively expose information
to offloaded IDS, sensitive information could leak to cloud insiders
via compromised IDS.

This paper proposes SEVmonitor to enable secure IDS offloading
for confidential VMs. SEVmonitor runs an agent inside a user’s
confidential VM. The user’s offloaded IDS obtains the memory data
of the VM from the agent and monitors the system in the VM by an-
alyzing the obtained data. In addition, SEVmonitor runs the user’s
IDS in another confidential VM and prevents information leakage
via the IDS. The IDS and the agent communicate with each other
using a virtual network or shared memory established between
the VMs. To protect this communication channel from cloud insid-
ers, SEVmonitor encrypts communication data independently of
confidential VMs because the memory of each confidential VM is
encrypted by a different key.

To enhance the security of the agent, SEVmonitor confines the
target system to an isolated execution environment created inside
the target VM. Then, it runs the agent outside that execution en-
vironment. Since isolated execution environments have tradeoffs
in terms of security, performance, and functionality, SEVmonitor
supports two execution environments: a container and an inner
VM. When it confines the target system to a container, it locates
the agent in the kernel of the guest operating system (OS) running
in the target VM. This method almost does not affect system per-
formance, while the isolation by a container is weaker than that
by a VM. When using an inner VM created inside a confidential
VM [13, 32, 40], SEVmonitor locates the agent in the guest hypervi-
sor running in the target VM. This method can isolate the agent
more strongly, while system performance degrades.

To reduce the overhead of nested virtualization [7] used for creat-
ing an inner VM, SEVmonitor uses BitVisor [39] and Xen [6]. BitVi-
sor is specialized to run a single VM and virtualizes only the mini-
mum devices. Xen’s Domain 0 uses lightweight para-virtualization

https://doi.org/10.1145/3773274.3774273
https://doi.org/10.1145/3773274.3774273
https://doi.org/10.1145/3773274.3774273


UCC ’25, December 1–4, 2025, Nantes, France Tomoharu Nono and Kenichi Kourai

and directly accesses devices in the passthrough mode. Users can
select one of the two to take tradeoffs between monitoring and
system performance. We have implemented SEVmonitor using con-
fidential VMs enabled by AMD SEV, which run on KVM [22]. Our
experiments showed that SEVmonitor enabled offloaded IDS to
obtain information necessary for the proc filesystem used in Linux.
We also clarified various tradeoffs in terms of performance.

The organization of this paper is as follows. Section 2 describes
the issues of monitoring confidential VMs. Section 3 proposes SEV-
monitor to enable IDS offloading with secure agents inside confi-
dential VMs, and Section 4 explains its implementation. Section 5
analyzes the security of SEVmonitor, and Section 6 shows exper-
imental results. Section 7 describes related work, and Section 8
concludes this paper.

2 Monitoring Confidential VMs
It is reported that insiders such as malicious administrators might
exist inside clouds [9, 34, 41]. If insiders eavesdrop on the memory
of VMs, sensitive information such as customer data could leak
from VMs. To address this issue, recent IaaS clouds provide con-
fidential VMs [2, 16, 28], which are protected by TEEs, to users.
As an example of TEEs, AMD EPYC processors provide Secure
Encrypted Virtualization (SEV) [1]. SEV encrypts the memory of
VMs transparently. It uses a different encryption key for each VM
in the encryption engine embedded into the memory controller.
Since the encryption keys are securely managed by the AMD secure
processor, even insiders who have privileges for managing VMs
cannot eavesdrop on the memory of VMs.

Even though the memory of confidential VMs is encrypted, it
is not protected if attackers intrude into the VMs. This is because
the memory encryption is effective only against attacks from the
outside of the VMs. Since thememory is transparently decrypted for
access inside the VMs, intruders could easily eavesdrop on sensitive
information in memory. From the perspective of processors, they
cannot be distinguished from legitimate users in VMs. Even if they
cannot directly access the memory containing sensitive information
inside the VMs, they could steal sensitive information by exploiting
the vulnerabilities of software such as the guest OS or running
malware.

Therefore, it is still necessary to detect attacks inside VMs using
IDS. In particular, host-based IDS monitors the system states in
VMs and finds the symptoms of intrusion. Since this type of IDS
inherently runs inside VMs, it could be disabled by intruders. To
protect IDS from intruders, a technique called IDS offloading with
VMI [12] has been proposed. This technique securely runs IDS
outside VMs and enables it to monitor the systems inside VMs.
Offloaded IDS detects attacks by analyzing OS data obtained from
the memory of VMs. As such, intruders cannot disable offloaded
IDS, while offloaded IDS can detect intruders.

However, there are two issues with applying IDS offloading to
confidential VMs. First, offloaded IDS cannot analyze OS data in
the memory of VMs because the memory is encrypted. From the
perspective of processors, offloaded IDS cannot be distinguished
from cloud insiders. Therefore, IDS has no means of decrypting the
memory of VMs. Second, sensitive information could leak via of-
floaded IDS if the systems in the VMs naively expose information to

IDS VM

IDS

hypervisor

memory

SEVmonitor
agent

SEVmonitor
library

target VM

communicate

Figure 1: The system architecture of SEVmonitor.

IDS. To monitor the system states, IDS obtains OS data, which could
contain sensitive information, from VMs. If cloud insiders succeed
in compromising IDS, they could obtain the sensitive information
that is kept inside IDS.

3 SEVmonitor
This paper proposes SEVmonitor to enable secure IDS offloading
for confidential VMs.

3.1 System Architecture
Fig. 1 illustrates the system architecture of SEVmonitor. SEVmon-
itor securely runs its agent inside a user’s confidential VM. This
SEVmonitor agent is a tiny software installed in the target VM. It is
used to obtain memory data on behalf of offloaded IDS because the
agent running inside the confidential VM can access the memory of
the VM. Offloaded IDS can obtain memory data via the agent even
from a confidential VM. Then, it can analyze the obtained memory
data and monitor the OS data contained in the memory data. In
addition, SEVmonitor securely offloads the user’s IDS to another
confidential VM called an IDS VM. Since the memory of the IDS VM
is encrypted by a processor-based TEE, even cloud insiders cannot
eavesdrop on sensitive information that the IDS obtains from the
target VM.

The threat model of SEVmonitor is as follows. SEVmonitor trusts
processors providing TEEs and assumes that they are free of vulner-
abilities. It trusts the agents running in the target confidential VMs.
It also trusts the systems running in the target confidential VMs at
boot time, e.g., by using remote attestation. However, we assume
that the systems in the target VMs have vulnerabilities and could
be compromised by external attackers or cloud insiders. The agents
running in the target VMs could be attacked by intruders as well,
but SEVmonitor isolates them, as mentioned in Section 3.2. SEV-
monitor also trusts the IDS VMs and assumes that the systems in
the IDS VMs are not compromised. Since the IDS VM runs only IDS,
it is easier to protect the IDS VMs than the target VMs. SEVmonitor
does not assume that denial-of-service (DoS) attacks against IDS
because TEEs basically cannot protect VMs from DoS attacks.

To enable IDS to obtain memory data transparently via the agent,
SEVmonitor provides the SEVmonitor library to IDS running in
the IDS VM. IDS communicates with the agent running in the
target VM via this library. This communication is performed using a
virtual network or shared memory established between the IDS and
target VMs. There are tradeoffs between these two communication
methods in terms of security and performance. The virtual network



UCC ’25, December 1–4, 2025, Nantes, France

Table 1: The tradeoffs between two isolation methods.

container inner VM
agent security ✓
agent performance ✓
system performance ✓
system functionality ✓

is more secure because access to its packets is restricted more
rigidly than data in shared memory. In contrast, the communication
overhead is smaller in shared memory. When IDS requires memory
data of the target VM, it invokes the library and sends the address
of the memory data to the agent. The agent obtains the memory
data corresponding to the received address and returns it to the
library. The library caches the received memory data and returns
the requested data to the IDS.

SEVmonitor protects the address and the memory data between
the IDS and target VMs by its own encryption and integrity check-
ing. Since the virtual network and shared memory are managed by
the hypervisor, cloud insiders could eavesdrop on and tamper with
data in the virtual network and shared memory. The cryptographic
key used by SEVmonitor is stored only in the two VMs. To securely
share the key, the agent generates a new key, encrypts it using the
public key of the IDS, and sends it to the IDS. Even cloud insiders
cannot obtain the key or decrypt data in the virtual network or
shared memory. Since attackers who do not have the generated
key cannot send requests to the agent, the memory data in the
confidential VMs is still protected against external attackers. Note
that the shared memory cannot be encrypted by a TEE. Since the
memory of each confidential VM is encrypted by a different key, it
cannot be shared if it is encrypted by either of the two keys used
for the IDS and target VMs.

3.2 Isolation of SEVmonitor Agents
To protect the agent running in the target VM, SEVmonitor confines
the target system in an isolated execution environment created in
the target VM and securely locates the agent outside it. This is
mandatory to prevent the agent from being disabled by intruders
in the target VM and continue to run inside the target VM after
intrusion. There are various tradeoffs between isolated execution
environments, e.g., security, performance, and functionality, as
shown in Table 1. Currently, SEVmonitor supports two types of
isolation methods.

One method is to confine the target system in a container created
by the guest OS inside the target VM, as illustrated in Fig. 2(a). In
this method, SEVmonitor locates the agent in the guest OS kernel,
which is outside the container. The container prevents intruders
from attacking the outside. Even if intruders could escape the con-
tainer, the kernel still protects the agent from the intruders. This
isolation method almost does not degrade the performance of the
target system because a container is a lightweight virtualization
provided by the guest OS. In addition, the in-kernel agent can ob-
tain the memory data of the target system efficiently because it
can access the requested memory of the guest OS directly without
address translation. However, isolation by a container is weaker
than that achieved by a VM. This method assumes that the guest

agent

target VM

guest
OS kernel

target system

container

(a) In-kernel agent

agent

target VM

guest
hypervisor

inner VM

guest OS
target system

(b) In-hypervisor agent

Figure 2: Two types of isolation methods.

OS is trusted, but the in-kernel agent could be disabled if the guest
OS is compromised by intruders. Since the container is usually not
given high privileges, the functionality of the target system in the
container is limited. This limitation could be relaxed by using a
container with high privileges, but that is more dangerous.

The other method is to confine the target system in an inner
VM created inside the target VM, as illustrated in Fig. 2(b). Such
nested virtualization for confidential VMs is achieved in Hecate [13],
OpenHCL [32], and Nested SEV [40]. In this method, SEVmonitor
locates the agent in the guest hypervisor, which is outside the
inner VM. Since a VM provides stronger isolation than a container,
the inner VM can protect the in-hypervisor agent from intruders
more securely. In addition, the target system can freely customize
the guest OS in the inner VM, so that the functionality of the
target system is not limited by the isolation. However, the overhead
of nested virtualization used for creating the inner VM is large.
In particular, the I/O performance of the target system degrades.
Since the guest hypervisor is isolated from the inner VM, the in-
hypervisor agent needs address translation and indirect access to
the memory of the target system. This can lead to low monitoring
performance.

Due to these agent locations, SEVmonitor does not run IDS itself
inside the target VM. It is not desirable to run IDS inside the guest
OS kernel or the guest hypervisor because vulnerabilities in IDS
lead to the compromise of the entire system of the target VM. In
addition, it is difficult to run complex IDS inside the kernel or the
hypervisor because they provide special execution environments,
which are different from those provided to regular IDS. SEVmonitor
can run IDS on top of the guest OS in the IDS VM.

4 Implementation
We have implemented SEVmonitor using confidential VMs with
AMD SEV [1] on top of KVM [22]. The in-kernel agent supports
Linux 5.4, and the in-hypervisor agent supports BitVisor [39] and
Xen 4.16 [6].

4.1 In-kernel Agent
The agent runs in the guest OS kernel when SEVmonitor confines
the target system in a container inside the target VM. We have
developed a Linux kernel module that runs the agent with a kernel
thread.



UCC ’25, December 1–4, 2025, Nantes, France Tomoharu Nono and Kenichi Kourai

C
PU

 u
til

iz
at

io
n 

(%
)

0

10

20

30

40

50

60

70

wait time (us)
100 120 140 160 180 200 220

Figure 3: CPU utilization by a busy loop with a wait time.

4.1.1 Communication with a Virtual Network. The agent commu-
nicates with IDS using TCP/IP via the virtual network between
the IDS and target VMs. When IDS starts, the SEVmonitor library
establishes a TCP connection to the agent. Whenever IDS requires
the memory data of the target VM, the library intercepts the access,
as described in Section 4.3, and sends its virtual address to the agent.
The agent obtains the data of the 4-KB memory page corresponding
to the address and returns it to the library. The library stores the
received data in the cache and provides it to the IDS. Since the
agent can access the entire memory of the target VM with virtual
addresses, it is not necessary to translate virtual addresses into
physical ones, unlike traditional IDS offloading. The data sent and
received by the agent is encrypted with AES.

To enable the agent to receive management commands such
as agent termination, the agent uses the non-blocking mode to
wait for requests from the SEVmonitor library. It executes the
kernel_accept function repeatedly until it receives a connection
request. After it establishes the connection to the SEVmonitor li-
brary, it executes the kernel_recvmsg function repeatedly to re-
ceive data requests. It also checks the reception of management
commands between executions. To prevent the agent from occu-
pying one CPU with a busy loop in the kernel, the agent waits
for several hundred microseconds between function invocations.
According to our experimental results on CPU utilization in Fig. 3,
the wait time is configured to 200 𝜇𝑠 .

4.1.2 Communication with Shared Memory. To reduce the over-
head of communication with a virtual network, the agent can use
shared memory between the VMs for fast communication. Using
ivshmem [44] provided by QEMU, SEVmonitor runs the ivshmem-
server on the host OS and maps the same part of the host memory
onto both the IDS and target VMs, as illustrated in Fig. 4. Since it
provides a virtual PCI device to the VMs, they access the shared
memory using the ivshmem-uio driver [26].

In the target VM, the guest OS remaps the memory of the PCI
device onto the kernel memory address space. As a result, the agent
can directly access the shared memory. Upon the memory remap-
ping, the guest OS sets the C-bit of the corresponding page table
entries (PTEs) to zero. SEV uses the C-bit to control the memory
encryption and encrypts a memory page if the corresponding C-bit
is set to one. Therefore, the agent can access the shared memory
without encryption by SEV and share it with the IDS VM.

In the IDS VM, on the other hand, SEVmonitor provides the PCI
device used for shared memory as a uio device to the IDS process.

IDS VM

IDS

target VM

uio device

ivshmem device

OS

host OS

agent

ivshmem device

target system

shared memory

Figure 4: Communication between VMs using shared mem-
ory.

Uio is the interface for accessing the device memory from the user
space in Linux. The SEVmonitor library linked to IDS accesses
the shared memory via the uio device. However, it cannot directly
access the shared memory because the existing ivshmem-uio driver
supports only the read and write system calls. These system calls
need to copy data between a process and the kernel.

To enable zero-copy access, SEVmonitor provides the modified
ivshmem-uio driver that supports the mmap system call. The driver
enables the SEVmonitor library to map the memory of the uio
device onto its memory address space and directly provide the
shared memory to IDS. When the library issues the mmap system
call, the driver remaps the memory of the PCI device onto the
process memory address space. However, the Linux kernel does not
set the C-bit of the PTEs to zero when remapping device memory
onto the process memory address space. Therefore, the modified
driver sets the C-bit to zero for the memory regions where the
device memory is mapped.

SEVmonitor achieves synchronization between IDS and the
agent using polling because the interrupt mechanism provided
by ivshmem does not work. The agent waits for the SEVmonitor
library to write a request to the shared memory by checking the
request using a busy wait with 200-𝜇𝑠 sleep. After the library writes
a request, it waits for the agent to write a response to the shared
memory using a busy wait. The request consists of the virtual ad-
dress of OS data, while the response consists of memory data. To
prevent insiders from eavesdropping on the shared memory that is
not encrypted by SEV, the library and the agent encrypt the request
and the response by themselves, respectively.

4.2 In-hypervisor Agent
The agent runs in the guest hypervisor when SEVmonitor confines
the target system in an inner VM inside the target VM. We have
developed the agents for two types of hypervisors.

4.2.1 Agent for BitVisor. To reduce the overhead of nested virtual-
ization, SEVmonitor uses BitVisor in the target VM and runs the
target system in the inner VM created by BitVisor. Since BitVisor is
optimized to run only one VM, it is more lightweight than general-
purpose hypervisors running multiple VMs, e.g., KVM. BitVisor
adopts the para-passthrough architecture, which virtualizes I/O
only when the hypervisor needs to interpose network and storage



UCC ’25, December 1–4, 2025, Nantes, France

agent

target VM

BitVisor

target system

inner VM

virtual NIC

lwIP

(a) Agent for BitVisor

agent

target VM

Xen

Domain 0

virtual NIC

target
system proxy

(b) Agent for Xen

Figure 5: Two types of in-hypervisor agents.

access. SEVmonitor can prevent the degradation of I/O performance
because it does not need to virtualize any I/O devices.

When the in-hypervisor agent communicates with IDS using a
virtual network, it uses lwIP [11], which is a lightweight TCP/IP
stack provided in BitVisor. To enable the agent to use the virtual
network of the target VM, BitVisor shares the virtual NIC between
the guest hypervisor and the inner VM and assigns different IP
addresses, as illustrated in Fig. 5(a). To enable this, the target VM
uses the virtual e1000e device, which is supported by the BitVisor
hypervisor. Since BitVisor does not support network sockets in
lwIP, the agent uses its Raw API. Unlike the socket API, when
it receives a request from the SEVmonitor library, the registered
callback is invoked. Then, it obtains the requested memory data
and returns it to the library.

Since the agent cannot directly access the memory of the inner
VM using the virtual address received from the library, it translates
the guest virtual address used in the inner VM into the host physical
address that can be used in the guest hypervisor. First, it finds the
PTE corresponding to the guest virtual address using the page tables
in the memory of the inner VM and obtains the guest physical
address stored in the PTE. Then, it translates the guest physical
address into the host physical address using the nested page tables
(NPT) for the inner VM, which is stored in the guest hypervisor.
Finally, it obtains the memory data of the inner VM using the host
physical address.

When the agent communicates with IDS using shared memory,
it leverages the shared memory established between the IDS and
inner VMs, not between the IDS and target VMs. This is because the
device driver for the shared memory is not provided for BitVisor.
The ivshmem-uio driver in the inner VM obtains the guest physical
address of the shared memory and its size and passes them to the
guest hypervisor using a new hypercall. The agent translates the
received guest physical address into a host physical one and can
access the shared memory. We assume that the target system in
the inner VM is not compromised at its boot time. Since the agent
in BitVisor cannot wait for requests from the SEVmonitor library
using polling, unlike the in-kernel agent, it sets an interval timer
and periodically checks requests in the shared memory.

4.2.2 Agent for Xen. As another way of reducing the overhead
of nested virtualization, SEVmonitor can use Xen in the target

Table 2: The tradeoffs between BitVisor and Xen’s Domain 0.

BitVisor Xen
monitoring performance ✓
system performance ✓

VM and run the target system in a para-virtualized VM. A para-
virtualized VM enables the efficient execution of the guest OS by
modifying it. In particular, SEVmonitor uses Domain 0 as a para-
virtualized VM. Domain 0 is a management VM that is booted
together with the guest hypervisor and virtualizes only CPUs and
memory. Since it virtualizes no I/O devices, the degradation of I/O
performance is suppressed in the inner VM. Although Domain
0 has privileges for managing the entire virtualized system, the
running guest hypervisor is protected from Domain 0. SEVmonitor
can detect the replacement of the hypervisor binary in Domain 0
using remote attestation, which checks the legitimacy of the guest
hypervisor.

When the in-hypervisor agent communicates with IDS using a
virtual network, it uses a proxy running in Domain 0, as illustrated
in Fig. 5(b). This is because the hypervisor in Xen does not provide
network functions, unlike BitVisor. When the proxy receives a
request from IDS, it invokes the guest hypervisor using a new
hypercall to obtain the requested memory data of Domain 0. Note
that the proxy does not directly obtain memory data for security,
although it can do so. The request is encrypted by the SEVmonitor
library and can be decrypted only by the guest hypervisor. Similarly,
the obtained memory data is encrypted by the guest hypervisor
and can be decrypted only by the SEVmonitor library. Therefore,
memory data does not leak to intruders via the proxy in Domain 0.

Table 2 shows the tradeoffs between BitVisor and Xen’s Domain
0. Since the in-hypervisor agent in Xen needs the proxy to commu-
nicate with IDS, its monitoring performance is worse than that of
BitVisor. However, the performance of a para-virtualized Domain 0
is better than that of a fully virtualized VM in BitVisor. In addition,
Domain 0 can directly use the virtio-net device provided by the
target VM in the passthrough mode because it is unnecessary to
support that device in the Xen hypervisor. The virtio-net device
is specialized for VMs and achieves better performance than the
virtual e1000e device, which is used in BitVisor.

The address translation for a para-virtualized VM is different
from that for a fully virtualized one. To obtain the memory data of
Domain 0 using the guest virtual address received from IDS, the
guest hypervisor translates it into a pseudo physical frame number
(PFN) using the page tables in the memory of Domain 0. Then, it
translates the PFN into a machine frame number (MFN) using the
physical-to-machine (P2M) table. Finally, it maps the memory page
corresponding to the MFN and accesses the memory of the inner
VM.

When the agent communicates with IDS using shared memory,
it leverages the shared memory established between the IDS VM
and Domain 0. This mechanism is similar to that for BitVisor. The
ivshmem-uio driver in Domain 0 obtains the PFN of the first page
of the shared memory and its size and passes them to the guest
hypervisor. The in-hypervisor agent translates the PFN into an
MFN and maps the corresponding memory page.



UCC ’25, December 1–4, 2025, Nantes, France Tomoharu Nono and Kenichi Kourai

4.3 SEVmonitor Library
To make it easier to analyze OS data and monitor the target system,
SEVmonitor uses the LLView framework [33]. LLView enables de-
velopers to write IDS programs using the source code of the Linux
kernel. It compiles the developed IDS programs using LLVM [43]
and converts the load instructions in the emitted intermediate rep-
resentation (bitcode). It embeds code for invoking the SEVmonitor
library before the load instructions into the bitcode. The SEVmon-
itor library communicates with the agent in the target VM and
obtains memory data. The obtained memory data is stored in the
cache and read by the load instructions of the IDS.

5 Security Analysis
First, let us consider that external attackers or cloud insiders intrude
into a target VM. Such intruders cannot access or disable the agent
unless they compromise the guest OS for the in-kernel agent or the
guest hypervisor for the in-hypervisor agent. SEVmonitor assumes
that the guest OS is not compromised when using the in-kernel
agent and that the guest hypervisor is not compromised when using
the in-hypervisor agent. Also, intruders cannot access or disable
IDS running in another confidential VM.

In addition, intruders cannot access communication data be-
tween the agent and IDS when SEVmonitor uses a virtual network.
The virtual network is accessible only to the guest OS running
the in-kernel agent and to the guest hypervisor running the in-
hypervisor agent. If Xen is used to run the in-hypervisor agent,
intruders could access the data handled by the proxy running on top
of the guest OS, but that data is protected by the guest hypervisor.
Even when SEVmonitor uses the shared memory, intruders cannot
access data in the shared memory if the in-kernel agent is used. In
this case, the shared memory is accessible only to the guest OS. If
the in-hypervisor agent is used, intruders could access the shared
memory because the shared memory is established using the guest
OS, which is assumed to be compromised in this case. However, the
data is protected by the guest hypervisor.

Second, cloud insiders could directly attack the agent and IDS
without intruding into the VMs. However, they cannot access the
agent or IDS running in confidential VMs from the outside. They
can stop or terminate the target VM with the agent, but this attack
is easily detected by the user of the VM because all the services
provided by the target VM stop. Cloud insiders can also stop or
terminate the IDS VM, but this attack is also easily detected by the
user.

6 Experiments
We conducted several experiments to show the effectiveness of
SEVmonitor. First, we confirmed that offloaded IDS could obtain
various OS data in a VM using SEVmonitor. Then, we examined
the time needed to obtain the data. We always enabled SEV for an
IDS VM, but we applied SEV to a target VM only when using the
in-kernel agent. We have implemented SEV support for an inner
VM created by BitVisor and Xen in our previous work [40], but we
did not use that support in these experiments because we have not
integrated it with SEVmonitor yet.

We used a server with an AMD EPYC 7262 processor, 128 GB of
memory, and 10 Gigabit Ethernet. We ran Linux 5.11 as the host

Table 3: The nine pseudofiles of the proc filesystemgenerated
by the IDS.

pseudo file contents
stat kernel and system statistics
meminfo statistics about memory usage
uptime the uptime of the system
tty/drivers the list of tty drivers
sys/kernel/osrelease the Linux kernel version
sys/kernel/pid_max the maximum process ID
[pid]/stat status information on the process
[pid]/status human-readable [pid]/stat
[pid]/auxv information passed to the process

OS and QEMU-KVM 6.2.0 as virtualization software. For target and
IDS VMs, we assigned two virtual CPUs and 2 GB of memory. In
a target VM, we ran a Docker container [10] on top of Linux 5.11
when using the in-kernel agent. For the in-hypervisor agent, we
ran Linux 5.4 when using BitVisor and Linux 5.11 when using Xen
4.16. As a remote client, we used a PC with an Intel Core i7-10700
processor, 16 GB of memory, and 10 Gigabit Ethernet and ran Linux
5.13.

6.1 System Monitoring
First, we have developed an IDS that obtains the version of the
guest OS running in the target system. This IDS obtained the string
stored in the linux_banner variable in the Linux kernel. When we
ran this IDS in the IDS VM, SEVmonitor sent one request to the
agent in the target VM and received memory data of 4 KB. As a
result, the IDS could obtain the OS version when we located the
agent in either the guest OS kernel or the guest hypervisor inside
the target VM.

Next, we have developed an IDS that obtains information on
the processes running in the target system. This IDS traversed the
process list from the init_task variable in the Linux kernel and
obtained the IDs and names of the processes. When we confined
the target system to a container or an inner VM using BitVisor,
SEVmonitor sent 119 requests to the agent and received memory
data of 476 KB. As a result, the IDS could obtain information on
119 processes. When we confined the target system to an inner VM
using Xen, SEVmonitor sent 127 requests because Domain 0 ran
127 processes including those related to Xen and the proxy used by
SEVmonitor.

Finally, we have developed an IDS that obtains the information
provided by the proc filesystem in the target system. The proc
filesystem is often used to monitor the system states. The IDS
generated nine pseudo files of the proc filesystem, whose details
are shown in Table 3. When we confined the target system in a
container, SEVmonitor sent 717 requests and received memory data
of 2.8 MB. We confirmed that the contents of the generated pseudo
files were basically the same as those in the target system. Similarly,
we confirmed that the IDS worked correctly when we used an inner
VM.



UCC ’25, December 1–4, 2025, Nantes, France

n/a

e1000e
virtio-net
shared memory

tim
e 

(m
s)

0.0

0.5

1.0

1.5

2.0

2.5

Docker BitVisor Xen

(a) OS version

n/a

e1000e
virtio-net
shared memory

tim
e 

(m
s)

0

20

40

60

80

100

120

Docker BitVisor Xen

(b) Process list

n/a

e1000e
virtio-net
shared memory

tim
e 

(m
s)

0

100

200

300

400

500

Docker BitVisor Xen

(c) Proc filesystem

Figure 6: Monitoring performance.

6.2 Monitoring Performance
We measured the time needed to obtain system information in the
target VM via the agent. Fig. 6(a) shows the performance when
we obtained the OS version. When we used the virtual network,
using virtio-net was faster than using e1000e. The times were 17%
and 29% shorter in Docker-based and Xen-based SEVmonitor, re-
spectively. We could not measure the time of using virtio-net in
BitVisor-based SEVmonitor because the BitVisor hypervisor does
not support virtio-net. Compared with Docker-based SEVmonitor,
the Xen-based one was slower because the IDS communicated with
the agent via the proxy running as a process. In contrast, using
shared memory was much faster than using the virtual network.
The monitoring performance was improved by 2.6x, 3.6x, and 3.0x
for Docker-based, BitVisor-based, and Xen-based SEVmonitor, re-
spectively. The performance difference was small between the three
types of SEVmonitor when using shared memory.

Fig. 6(b) shows the time for obtaining the process list in the target
VM via the agent. Like the experiment of the OS version, using
virtio-net was faster than using e1000e, but the trend was different.
The time was 54% faster in Docker-based SEVmonitor, while that
was only 11% faster in the Xen-based one. This is probably because
the virtio-net driver in Linux is more efficient than the e1000e
driver when many packets are sent and received. Using shared
memory was faster in BitVisor-based and Xen-based SEVmonitor,
but that was 19% slower than virtio-net in the Docker-based one.
One possible reason is that the virtio-net driver in Linux can handle
packets more efficiently than communication using shared memory
and polling.

Fig. 6(c) shows the time for generating nine pseudo files in the
proc filesystem. The trend was similar to that of obtaining the pro-
cess list. In Xen-based SEVmonitor, the difference between e1000e
and virtio-net became smaller and almost the same. Using shared
memory in BitVisor-based SEVmonitor became much faster and
the fastest among the three types of SEVmonitor. The reason is
that the agent in the BitVisor hypervisor uses a timer instead of
a busy loop with a wait time. The timer woke up the agent more
quickly. Fig. 7 shows the generation time of each pseudo file in
Docker-based SEVmonitor. Since the number of processes was 119,
it took longer to generate per-process pseudo files in total.

tim
e 

(m
s)

0

25

50

75

100

125

150

175

stat
meminfo

uptime
tty/drivers

sys/kernel/

osrelease

sys/kenrel/

pid_max

[pid]/stat

[pid]/status

[pid]/auxv

Figure 7: The generation time of each pseudo file.

6.3 System Performance
To examine the overhead of isolating the agent from the target
system, we first measured the network performance of the target
system. We ran the iperf server in the target system and the iperf
client at a remote host. As a baseline, we measured the performance
in Linux without the isolation of a container or an inner VM. To
examine whether BitVisor and Xen could reduce the overhead of
nested virtualization, we also used an inner VM created by KVM
inside the target VM. KVM provides VMs whose devices are fully
virtualized. We used virtio-net for the inner VM on KVM, while we
used e1000e in the target VMs for all the configurations.

Fig. 8 shows the throughput of TCP/IP. When we isolated the tar-
get system using a Docker container, the performance degradation
was only 3.8%. In contrast, that was 24% when we isolated the target
system by an inner VM using KVM. BitVisor and Xen improved
the performance by 19% and 16%, respectively. Compared with no
isolation, the performance degradation was 8.9% for BitVisor and
11% for Xen.

Next, we measured the performance of the nginxWeb server [31]
running in the target VM. We sent requests using the ApacheBench
benchmark [42] on the same host. Fig. 9 shows the throughput of
the Web server. When we isolated the target system in a Docker
container, the throughput improved unexpectedly. This is probably
due to measurement errors. When we isolated the target system in
an inner VM, the throughput degraded due to nested virtualization.
When we used a VM created by KVM, the performance degradation
was 32%. In contrast, that was only 15% and 19% in BitVisor-based



UCC ’25, December 1–4, 2025, Nantes, France Tomoharu Nono and Kenichi Kourai

th
ro

ug
hp

ut
 (r

eq
/s

)

0

500

1000

1500

2000

2500

Linux Docker KVM BitVisor Xen

Figure 8: The network performance of the target system.

th
ro

ug
hp

ut
 (r

eq
/s

)

0

500

1000

1500

2000

Linux Docker KVM BitVisor Xen

Figure 9: The Web performance in the target system.

and Xen-based SEVmonitor, respectively. This means that a VM
created by BitVisor and Domain 0 in Xen could reduce the isolation
overhead.

6.4 Overhead of Enabling SEV
We examined the impact of SEV on system monitoring in SEVmon-
itor. In this experiment, we ran the in-kernel agent and compared
monitoring performance for the target VM and the IDS VM with
and without SEV enabled. We measured the time needed to obtain
information on the OS version and the process list from the target
VM. As shown in Fig. 10, the virtual network basically degraded
the monitoring performance by SEV. When we obtained the OS
version, the overhead was 19% for e1000e and 17% for virtio-net.
This was mainly caused by data copies from and to unencrypted
DMA bounce buffers, which were accessed by the device emulator
to emulate virtual NICs for SEV-enabled VMs. When we obtained
the process list, the overhead was 25% for virtio-net but only 1% for
e1000e. It is under investigation why the overhead of SEV was so
small in this configuration.

On the other hand, the overhead of SEV was negligible when we
used shared memory instead of the virtual network to communicate
with the agent. The time of obtaining the process list was 1.6%
longer, while that of obtaining the OS version was 3.4% shorter.
This is because shared memory does not need extra encryption or
decryption by enabling SEV.

6.5 Overhead of Data Encryption
We examined the overhead of encrypting data between the SEV-
monitor library and the agent. We compared the time needed to

no SEV
SEV

tim
e 

(m
s)

0.0

1.0

2.0

3.0

4.0

5.0

e1000e virtio-net shared memory

(a) OS version

no SEV
SEV

tim
e 

(m
s)

0

20

40

60

80

100

120

e1000e virtio-net shared memory

(b) Process list

Figure 10: The overhead of SEV.

obtain information with and without the encryption of communi-
cation data in Docker-based SEVmonitor. Fig. 11 shows the results.
For the OS version, the overheads of data encryption were 13% and
9% when using e1000e and virtio-net, respectively. In contrast, the
overhead was only 3.7% for shared memory. This is because the
agent needs only data encryption as an extra task when it copies
data from the memory of the target system to the shared memory.
When using the virtual network, the agent has to copy data with
encryption from the memory of the target system to a local buffer
as an extra task. For the process list and the proc filesystem, on the
other hand, the monitoring time always became shorter due to data
encryption. The reason is under investigation.

This trend was a bit different in Xen-based SEVmonitor, as shown
in Fig. 12. For the OS version, the overhead of data encryption was
65% when using e1000e. This is probably due to the large vari-
ance. In contrast, using virtio-net with data encryption was slightly
faster than without data encryption. For the process list and the
proc filesystem, the monitoring performance was degraded by data
encryption when using e1000e, unlike Docket-based SEVmonitor.

7 Related Work
00SEVen [36] is yet another method to monitor confidential VMs. It
securely runs an agent inside a confidential VM using VM privilege
levels (VMPLs) provided by AMD SEV-SNP. VMPLs enable a VM
to divide its address space into four levels. The agent runs in the
highest privilege called VMPL0, while the target system runs in a
lower privilege. The agent can directly access the memory of the
target system and send the memory data to remote IDS. However,
00SEVen heavily relies on the hypervisor to switch VMPLs and run
the agent. In contrast, SEVmonitor can schedule the agent inside



UCC ’25, December 1–4, 2025, Nantes, France

no encryption
encryption

tim
e 

(m
s)

0.0

0.2

0.5

0.8

1.0

1.2

e1000e virtio-net shared memory

(a) OS version

no encryption
encryption

tim
e 

(m
s)

0

20

40

60

80

e1000e virtio-net shared memory

(b) Process list

no encryption
encryption

tim
e 

(m
s)

0

50

100

150

200

250

300

e1000e virtio-net shared memory

(c) Proc filesystem

Figure 11: The overhead of data encryption in Docker-based SEVmonitor.

no encryption
encryption

tim
e 

(m
s)

0.0

0.5

1.0

1.5

2.0

2.5

e1000e virtio-net shared memory

(a) OS version

no encryption
encryption

tim
e 

(m
s)

0

20

40

60

80

100

120

e1000e virtio-net shared memory

(b) Process list

no encryption
encryption

tim
e 

(m
s)

0

100

200

300

400

e1000e virtio-net shared memory

(c) Proc filesystem

Figure 12: The overhead of data encryption in Xen-based SEVmonitor.

a confidential VM. It is difficult for the hypervisor to stop only
the agent without stopping the entire confidential VM. In addition,
00SEVen cannot be applied to confidential VMs with the other TEEs
such as Arm CCA [3] because it strongly relies on the mechanism
in SEV-SNP.

There are several systems that run an agent in the enclave pro-
vided by Intel SGX [27], which is one of the TEEs. The SGX enclave
is a protection domain created inside a process and encrypts its
memory by processors. For example, an agent is used to save and
restore the internal state of an enclave to and from the external
memory in VM migration [17] and container migration [30]. It is
necessary because the migration mechanism outside the enclave
cannot access the memory of the enclave. However, the agent is
not protected from the rest of the enclave. Therefore, it cannot be
executed securely if an untrusted service runs inside the enclave.

To protect an agent in an enclave, Ryoan [19] constructs a sand-
box inside an enclave using Google NaCl [15] and runs an agent
outside the sandbox. The agent verifies the code executed in the
sandbox and performs runtime checks. Similarly, AccTEE [14] cre-
ates a sandbox using WebAssembly [18] and securely runs a service
inside the sandbox. The agent consistently records the resource
usage by the service in the enclave. However, it is difficult to apply
NaCl and WebAssembly to the entire system including the OS in a
confidential VM.

SEVmonitor protects IDS using a confidential VM, but the sys-
tems protecting IDS with SGX have been proposed. S-NFV [38] lo-
cates the internal states of network-based IDS, specifically Snort [8],

and the code handling those states in an enclave. IDS securely uses
the internal states by invoking the code via the provided API. SEC-
IDS [24] runs the entire Snort in an enclave using the Graphene-SGX
library OS [45]. It uses DPDK [25] to obtain network packets in the
enclave. These systems could be used to securely run IDS instead
of the confidential IDS VM in SEVmonitor.

SGmonitor [29] runs host-based IDS in an enclave. The IDS
obtains the memory data of the target VM via the hypervisor and
analyzes OS data to monitor the target system. SCwatcher [21]
enables the existing host-based IDS by providing the standard OS
interface with SCONE [4] and Occlum [37]. It also provides the
proc filesystem that returns information on the target system in
the enclave. These systems need to trust the underlying hypervisor
to securely obtain the memory data of the target VM. Instead of the
hypervisor provided by clouds, SEVmonitor trusts the agent that
securely runs in the target confidential VM.

Before TEEs are provided by processors, the systemmanagement
mode (SMM) in x86 is used to run IDS securely. HyperGuard [35]
checks the integrity of the hypervisor in BIOS. HyperSentry [5]
securely inserts an agent in the hypervisor using SMM to monitor
the target system. HyperCheck [46] transfers the memory data of
the target system to a remote host using SMM and monitors it.
SSdetector [23] combines SMM with SGX. It runs IDS in an SGX
enclave and securely obtains the memory data of the target system
using SMM. However, the execution in SMM is slow and needs
to stop the entire system. The code executed in SMM has to be
implemented in BIOS.



UCC ’25, December 1–4, 2025, Nantes, France Tomoharu Nono and Kenichi Kourai

8 Conclusion
This paper proposed SEVmonitor to enable secure IDS offloading
for confidential VMs. SEVmonitor confines the target system in an
isolated execution environment, e.g., a container or an inner VM,
created in the target VM and securely runs an agent outside the
execution environment. IDS securely runs in another confidential
VM and communicates with the agent to obtain memory data using
the virtual network or shared memory. Our experiments showed
that IDS could obtain OS data from a confidential VM efficiently.

One of our future work is to improve monitoring performance.
The communication overhead is imposed whenever IDS obtains
memory data in the current implementation, but it can be reduced
by obtaining necessary data in batches. Another direction is to sup-
port other methods for isolating agents. For example, SEVmonitor
can locate an agent in BIOS running in a confidential VM. Such
an agent is more secure than the in-kernel agent, while system
performance is better than using an inner VM.

Acknowledgments
This work was partially supported by JST, CREST Grant Number
JPMJCR21M4, Japan.

References
[1] Advanced Micro Devices, Inc. 2020. Secure Encrypted Virtualization API Version

0.24.
[2] Amazon Web Services, Inc. 2024. AMD SEV-SNP for Amazon EC2 Instances.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html.
[3] Arm Limited. 2023. Arm Confidential Computing Architecture. https://www.arm.

com/architecture/security-features/arm-confidential-compute-architecture.
[4] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D.

Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P.
Pietzuch, and C. Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX.
In Proc. USENIX Symp. Operating Systems Design and Implementation. 689–703.

[5] A. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. Skalsky. 2010. HyperSentry:
Enabling Stealthy In-context Measurement of Hypervisor Integrity. In Proc. ACM
Conf. Computer and Communications Security. 38–49.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, and A. Warfield. 2003. Xen and the Art of Virtualization. In Proc. ACM
Symp. Operating Systems Principles. 164–177.

[7] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gordon, A.
Liguori, O. Wasserman, and B.-A. Yassour. 2010. The Turtles Project: Design and
Implementation of Nested Virtualization. In Proc. 9th USENIX Symp. Operating
Systems Design and Implementation. 423–436.

[8] Cisco Systems. [n. d.]. Snort – Network Intrusion Detection & Prevention System.
https://www.snort.org/.

[9] CyberArk Software. 2009. Global IT Security Service.
[10] Docker, Inc. [n. d.]. Docker: Accelerated Container Application Development.

https://www.docker.com/.
[11] A. Dunkels. [n. d.]. lwIP – A Lightweight TCP/IP Stack. https://savannah.nongnu.

org/projects/lwip/.
[12] T. Garfinkel and M. Rosenblum. 2003. A Virtual Machine Introspection Based

Architecture for Intrusion Detection. In Proc. Network and Distributed Systems
Security Symp. 191–206.

[13] X. Ge, H. Kuo, and W. Cui. 2022. Hecate: Lifting and Shifting On-premises
Workloads to an Untrusted Cloud. In Proc. ACM SIGSAC Conf. Computer and
Communications Security. 1231–1242.

[14] D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza. 2019. AccTEE: AWebAssembly-
based Two-way Sandbox for Trusted Resource Accounting. In Proc. Int. Middle-
ware Conf. 123–135.

[15] Google, Inc. 2016. Native Client. https://developer.chrome.com/docs/native-
client/.

[16] Google LLC. 2025. Confidential VM Documentation. https://cloud.google.com/
confidential-computing/confidential-vm/docs.

[17] J. Gu, Z. Hua, Y. Xia, H. Chen, B. Zang, H. Guan, and J. Li. 2017. Secure Live
Migration of SGX Enclaves on Untrusted Cloud. In Proc. Int. Conf. on Dependable
Systems and Networks. 225–236.

[18] A. Haas, A. Rossberg, D. Schuff, B. Titzer, M. Holman, D. Gohman, L. Wagner, A.
Zakai, and J. Bastien. 2017. Bringing the Web Up to Speed with WebAssembly.

In Proc. ACM SIGPLAN Conf. Programming Language Design and Implementation.
185–200.

[19] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. 2016. A Distributed Sandbox
for Untrusted Computation on Secret Data. In Proc. USENIX Symp. Operating
Systems Design and Implementation. 533–549.

[20] Intel Corporation. 2023. Intel Trust Domain Extension. Technical Report. Intel
Corporation.

[21] T. Kawamura and K. Kourai. 2022. Secure Offloading of User-level IDS with
VM-compatible OS Emulation Layers for Intel SGX. In Proc. IEEE Int. Conf. Cloud
Computing. 157–166.

[22] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. 2007. kvm: the Linux
Virtual Machine Monitor. In Proc. Ottawa Linux Symp. 225–230.

[23] Y. Koga and K. Kourai. 2023. SSdetector: Secure and Manageable Host-based IDS
with SGX and SMM. In Proc. Int. Conf. Trust, Security and Privacy in Computing
and Communications. 539–548.

[24] D. Kuvaiskii, S. Chakrabarti, and M. Vij. 2018. Snort Intrusion Detection System
with Intel Software Guard Extension (Intel SGX). In arXiv:1802.00508.

[25] Linux Foundation. [n. d.]. Data Plane Development Kit (DPDK).
https://www.dpdk.org/.

[26] C.Macdonell. [n. d.]. ivshmem-uio. https://github.com/shawnanastasio/ivshmem-
uio.

[27] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi, V. Shanbhogue, and
U. Savagaonkar. 2013. Innovative Instructions and Software Model for Isolated
Execution. In Proc. Int. Workshop on Hardware and Architectural Support for
Security and Privacy.

[28] Microsoft Corporation. 2024. About Azure confidential VMs. https://learn.
microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview.

[29] T. Nakano and K. Kourai. 2021. Secure Offloading of Intrusion Detection Systems
from VMs with Intel SGX. In Proc. IEEE Int. Conf. Cloud Computing. 297–303.

[30] K. Nakashima and K. Kourai. 2021. MigSGX: AMigration Mechanism for Contain-
ers Including SGX Applications. In Proc. Int. Conf. Utility and Cloud Computing.

[31] NGINX, Inc. [n. d.]. NGINX: High Performance Load Balancer, Web Server, &
Reverse Proxy. https://www.nginx.com/.

[32] C. Oo. 2024. OpenHCL: A Linux based paravisor for Confidential VMs. Linux
Plumbers Conference 2024.

[33] Y. Ozaki, S. Kanamoto, H. Yamamoto, and K. Kourai. 2019. Detecting System
Failures with GPUs and LLVM. In Proc. ACM SIGOPS Asia-Pacific Workshop on
Systems. 47–53.

[34] PwC. 2014. US Cybercrime: Rising Risks, Reduced Readiness.
[35] J. Rutkowska and R. Wojtczuk. 2008. Preventing and Detecting Xen Hypervisor

Subversions. Black Hat USA.
[36] F. Schwarz and C. Rossow. 2024. 00SEVen – Re-enabling Virtual Machine Foren-

sics: Introspecting Confidential VMs Using Privileged in-VM Agents. In Proc.
USENIX Security Symposium. 1651–1668.

[37] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan. 2020.
Occlum: Secure and Efficient Multitasking Inside a Single Enclave of Intel SGX.
In Proc. Int. Conf. Architectural Support for Programming Languages and Operating
Systems. 955–970.

[38] M. Shih, M. Kumar, T. Kim, and A. Gavrilovska. 2016. S-NFV: Securing NFV
States by Using SGX. In Proc. ACM Int. Workshop on Security in Software Defined
Networks & Network Function Virtualization. 45–48.

[39] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M.
Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato.
2009. BitVisor: A Thin Hypervisor for Enforcing I/O Device Security. In Proc. Int.
Conf. Virtual Execution Environments. 121–130.

[40] K. Takiguchi and K. Kourai. 2024. Protecting Nested VMs with AMD SEV. Poster
at ACM SIGOPS Asia-Pacific Workshop on Systems.

[41] TechSpot News. 2010. Google Fired Employees for Breaching User
Privacy. http://www.techspot.com/news/40280-google-fired-employees-for-
breaching-user-privacy.html.

[42] The Apache Software Foundation. [n. d.]. Apache HTTP Server Benchmarking
Tool. https://httpd.apache.org/.

[43] The LLVM Foundation. [n. d.]. The LLVM Compiler Infrastructure. https://llvm.
org/.

[44] The QEMU Project Developers. [n. d.]. Inter-VM Shared Memory Device. https:
//qemu-project.gitlab.io/qemu/system/ivshmem.html.

[45] C. Tsai, D. Porter, and M. Vij. 2017. Graphene-SGX: A Practical Library OS
for Unmodified Applications on SGX. In Proc. USENIX Annual Technical Conf.
645–658.

[46] J. Wang, A. Stavrou, and A. Ghosh. 2010. HyperCheck: A Hardware-assisted
Integrity Monitor. In Proc. Int. Symp. Recent Advances in Intrusion Detection.
158–177.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.snort.org/
https://www.docker.com/
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/
https://developer.chrome.com/docs/native-client/
https://developer.chrome.com/docs/native-client/
https://cloud.google.com/confidential-computing/confidential-vm/docs
https://cloud.google.com/confidential-computing/confidential-vm/docs
https://github.com/shawnanastasio/ivshmem-uio
https://github.com/shawnanastasio/ivshmem-uio
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https:// www.nginx.com/
http://www.techspot.com/news/40280-google-fired-employees-for-breaching-user-privacy.html
http://www.techspot.com/news/40280-google-fired-employees-for-breaching-user-privacy.html
https://httpd.apache.org/
https://llvm.org/
https://llvm.org/
https://qemu-project.gitlab.io/qemu/system/ivshmem.html
https://qemu-project.gitlab.io/qemu/system/ivshmem.html

	Abstract
	1 Introduction
	2 Monitoring Confidential VMs
	3 SEVmonitor
	3.1 System Architecture
	3.2 Isolation of SEVmonitor Agents

	4 Implementation
	4.1 In-kernel Agent
	4.2 In-hypervisor Agent
	4.3 SEVmonitor Library

	5 Security Analysis
	6 Experiments
	6.1 System Monitoring
	6.2 Monitoring Performance
	6.3 System Performance
	6.4 Overhead of Enabling SEV
	6.5 Overhead of Data Encryption

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

