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Abstract—Recently emerging programmable network switches
can control packet forwarding by software, e.g., using the P4
language. For virtual machines (VMs), virtual P4 switches have
been developed to execute P4 programs inside virtual switches. If
users could load their own P4 programs into virtual P4 switches,
it would enable custom packet forwarding using information
inside their VMs. In clouds, however, users cannot fully trust
virtual P4 switches, nor can virtual P4 switches trust users’ P4
programs. To address these issues, this paper proposes P4 Shield
for enabling the secure execution of each user’s P4 programs
outside clouds’ virtual switches by using P4 VMs prepared per
user. P4 Shield protects P4 programs from clouds by running
P4 VMs as confidential VMs, whose states are protected by
processors. It also protects clouds’ virtual switches from users’
P4 programs by confining them in uBPF sandboxes created in P4
VMs. To allow P4 programs to use information inside users’ VMs,
P4 Shield provides P4 external functions for accessing information
in the shared memory between a P4 VM and a user’s VM. We
have implemented P4 Shield using Open vSwitch and confirmed
its effectiveness.

Index Terms—P4, uBPF, Open vSwitch, confidential VM, cloud
computing.

I. INTRODUCTION

Recently, it has become possible to program packet forward-
ing in network switches using the P4 language [1]. Such P4
switches can perform advanced packet filtering and rewriting
in the data plane. They can enable emerging technologies
without waiting for the release of new network switches. They
are also used to validate new network protocols that aim for
future standardization. In addition to physical P4 switches,
virtual switches supporting P4 have also been developed [2],
[3]. Virtual P4 switches are used to connect virtual machines
(VMs) to virtual networks and execute P4 programs for all the
packets from and to VMs inside the switches.

Currently, P4 programs are loaded into virtual P4 switches
by network or host administrators. If users could load their
own P4 programs, more flexible packet forwarding would be
possible for each VM. In addition, if P4 programs could use
information inside users’ VMs, advanced packet processing
would be achieved. In clouds, however, virtual switches are
provided by clouds and are not necessarily trustworthy for
users. For example, clouds could tamper with the P4 programs
loaded by users and eavesdrop on in-VM information obtained
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by the P4 programs. Conversely, users’ P4 programs could
negatively affect virtual switches if they have some issues [4].

This paper proposes P4 Shield for enabling the secure
execution of each user’s P4 programs outside clouds’ virtual
switches by using P4 VMs prepared per user. P4 Shield
prevents attacks against users’ P4 programs from clouds by
running P4 VMs as confidential VMs. The states of confiden-
tial VMs are encrypted and integrity-checked by processors
using trusted execution environments (TEEs) such as AMD
SEV [5] and Intel TDX [6]. In addition, P4 Shield protects
clouds’ virtual switches from the abnormal behavior of users’
P4 programs by confining P4 programs in uBPF sandboxes [7]
created in P4 VMs. uBPF is a framework for safe program
execution with load-time verification.

In P4 Shield, a virtual switch first passes a received packet
to an appropriate P4 VM to execute P4 programs and then
forwards the packet according to the execution results. At this
time, P4 Shield allows P4 programs to use information inside
users’ VMs (user VMs). Since P4 programs cannot access
in-VM information directly, P4 Shield provides dedicated
external functions to obtain in-VM information. The external
function in P4 is used to execute programs defined outside P4
programs. In-VM information is stored in the shared memory
established between a P4 VM and a user VM. To access
the shared memory, the P4 external functions invoke a helper
function provided by the uBPF runtime.

We have implemented P4 Shield using Open vSwitch [8],
the uBPF runtime, and confidential VMs with AMD SEV. We
conducted several experiments to show the effectiveness of P4
Shield. First, we examined whether P4 Shield could perform
advanced packet filtering using in-VM information on TCP
memory. The results show that P4 Shield could deny new TCP
connections when the used TCP memory exceeded a custom
threshold in a user VM. We also measured the latency and
throughput of TCP and UDP communications in a user VM
and confirmed that performance degradation due to P4 Shield
was not so large for the secure execution of P4 programs.

The remainder of this paper is organized as follows. Sec-
tion II presents challenges for allowing users to load P4
programs into virtual switches in clouds. Section III proposes
P4 Shield to securely execute users’ P4 programs using in-VM
information in P4 VMs. Section IV explains the implementa-
tion of P4 Shield, and Section V describes experiments to
show its effectiveness. Section VI presents related work, and



host

user VM user VM

virtual P4 switch

P4 programs

Fig. 1. A virtual P4 switch.

Section VII concludes this paper.

II. VIRTUAL P4 SWITCHES IN CLOUDS

The P4 language [1] is used for the programming of the
network data plane. It is a domain-specific language and
enables programmers to define the behavior of the data plane
in a high-level and declarative manner. A P4 program takes
packet data as input and analyzes the packet headers in the
parser block. Then, it executes a pipeline of packet processing,
such as packet filtering and the modification of packet headers,
in the control blocks. Finally, it reconstructs packet data from
the modified packet headers in the deparser block. Such P4
programs are executed in P4 network switches.

In addition to physical P4 switches, P4-compatible vir-
tual switches such as P4rt-OVS [2] and IPDK Networking
Recipe [3] have been developed for VMs. In a virtualized
environment, a virtual switch is created inside each host, which
runs VMs on top of the hypervisor. It connects the virtual
NICs of all the VMs running in the same host. Then, a virtual
network is constructed by connecting virtual switches across
multiple hosts via physical NICs. Each virtual switch receives
a packet from a VM or a physical NIC in the same host
and forwards it to another VM or a physical NIC. Virtual
P4 switches execute P4 programs on packet forwarding, as
illustrated in Fig. 1.

Since P4 programs are handled by virtual switches, which
are a part of virtualized infrastructure, they are usually loaded
into virtual switches only by network or host administrators.
For example, P4rt-OVS provides the ovs-ofctl command,
which needs administrator privileges to be executed. If users,
i.e., the owners of VMs, could load their own P4 programs
into virtual switches, more flexible packet forwarding could be
performed for each VM. Furthermore, if users’ P4 programs
could use information inside their VMs, advanced packet pro-
cessing would become possible. One example of such packet
processing is packet filtering based on information about
processes and users transmitting and receiving packets [9].

However, there are three challenges for enabling such user-
created P4 programs using in-VM information to be executed
in virtual P4 switches. First, virtual P4 switches provided
in clouds are not necessarily trustworthy for users. If they
are managed by untrusted cloud administrators, they could
mount various attacks against P4 programs loaded by users.
If eavesdropping on P4 programs themselves or in-VM in-

formation obtained by P4 programs, they could breach the
confidentiality of the P4 programs or user VMs. If tampering
with P4 programs to perform unintended packet forwarding,
they could also breach the integrity of the P4 programs.
Furthermore, the availability is lost if P4 programs are not
executed for all packets in virtual P4 switches.

Second, P4 programs loaded by users could negatively affect
virtual P4 switches if they are defective or malicious. If they
consume large amounts of resources such as CPU and memory
in virtual P4 switches, there could be a delay in forwarding
all packets. If vulnerabilities exist in P4 programs or the P4
runtime executing them, the control of virtual P4 switches
may be taken over. In fact, there are several reports of P4
vulnerabilities [4]. Vulnerable P4 programs fall into infinite
loops and discard all subsequent packets, direct packets that do
not correctly specify destination ports to specific ports, or leak
information from previously forwarded packets under certain
conditions.

Third, P4 programs can access only information contained
in packet headers and payloads. To enable P4 programs to use
in-VM information, it is necessary to extend P4 so that P4
programs can obtain information from user VMs. One possible
solution is to add an API for network communication with user
VMs. However, it is difficult to achieve sufficient performance
of packet forwarding in virtual P4 switches because of com-
munication overhead. To reduce this overhead, it is possible to
add an API for VM introspection [10], which directly accesses
the memory of user VMs and analyzes the data structure of
the operating system (OS). Unfortunately, this method is not
applicable if user VMs are running as confidential VMs [11],
[12], whose memory is encrypted by processors. In this case,
P4 programs cannot obtain information in the memory of user
VMs.

The threat model in this paper is as follows. We do not trust
clouds, including virtual switches and administrators. How-
ever, we assume that TEE hardware and the software running
in confidential VMs are trusted and free of vulnerabilities. We
consider attacks in which clouds eavesdrop on and tamper with
users’ P4 programs and information obtained from user VMs.
Clouds could also mount attacks against the communication
path for P4 programs to obtain information from user VMs.
Furthermore, they could bypass the execution of users’ P4
programs. In addition, we consider attacks in which users’ P4
programs adversely affect virtual switches, such as resource
exhaustion.

III. P4 SHIELD

P4 Shield enables clouds’ virtual switches to securely
execute each user’s P4 programs using dedicated VMs called
P4 VMs, which are prepared per user. When a virtual switch
receives a packet related to a user VM, it first passes the
packet to the corresponding P4 VM via shared memory, as
shown in Fig. 2. Then, the P4 VM executes P4 programs and
returns a decision on whether to forward or discard, and, if
necessary, a rewritten packet data, to the virtual switch. When
P4 programs need information inside the user VM for the
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Fig. 2. The system architecture of P4 Shield.

decisions, they obtain the necessary information from the user
VM using shared memory. Finally, the virtual switch forwards
or discards the packet.

P4 Shield protects users’ P4 programs from clouds by
running P4 VMs as confidential VMs. Confidential VMs are
protected by trusted execution environments (TEEs), e.g.,
AMD SEV [5] and Intel TDX [6], provided in recent pro-
cessors. Since the memory and register states of P4 VMs are
encrypted, clouds cannot eavesdrop on P4 programs and in-
VM information obtained by P4 programs. Since their integrity
is also maintained, clouds cannot tamper with P4 programs.
Unlike the traditional virtual P4 switches, virtual switches
are protected from users’ P4 programs by executing no P4
programs inside the virtual switches. Even if P4 programs
exhibit abnormal behavior, P4 Shield confines that negative
impact in P4 VMs by the isolation of VMs.

Since P4 Shield can execute multiple P4 programs in one P4
VM, it uses uBPF sandboxes [7] to isolate P4 programs from
each other. uBPF is a userspace implementation of eBPF [13],
which is a framework used in Linux and Windows to safely
run programs loaded into the OS kernel. P4 Shield compiles
a user’s P4 program into uBPF bytecode and loads it into the
uBPF runtime running in a P4 VM. At this time, the uBPF
runtime verifies the bytecode so that unsafe instructions are not
executed. Simultaneously, it compiles the bytecode into native
code using just-in-time (JIT) compilation to execute the P4
program efficiently. Since an isolated execution environment
is provided for each uBPF bytecode, P4 programs do not affect
each other or virtual switches.

To enable P4 programs to obtain information from user
VMs, P4 Shield uses the shared memory between a P4 VM and
each user VM. While communication via shared memory is
already more efficient than network communication, P4 Shield
further eliminates real-time interaction. A user VM stores
information needed by P4 programs in the shared memory
periodically. P4 programs can then obtain that information
from the shared memory immediately. The shared memory is
not encrypted by processors because encrypted memory cannot
be shared between VMs. Therefore, clouds can eavesdrop on
or tamper with information in the shared memory. To prevent
such attacks, a user VM encrypts information and stores it with
its message authentication code (MAC) in the shared memory.
A P4 VM decrypts the information in the shared memory and
verifies its integrity. These VMs securely exchange the cryp-
tographic keys necessary for this self-protection in advance.

P4 VM
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Fig. 3. Obtaining in-VM information via external functions.

P4 Shield allows P4 programs to access in-VM information
in the shared memory by providing dedicated external func-
tions, as illustrated in Fig. 3. Since the external function is
included in the specification of the P4 language, P4 Shield
does not need to extend the specification. The P4 external
functions are compiled into uBPF bytecode, which is linked
to a P4 program that is also compiled into uBPF bytecode.
However, they cannot access the shared memory where in-
VM information is stored due to uBPF sandboxes. Therefore,
the P4 external functions invoke a helper function provided
by the uBPF runtime extended for P4 Shield. Then, the helper
function accesses the shared memory and returns the speci-
fied in-VM information to P4 programs via the P4 external
functions.

To enable users to verify whether P4 programs are executed
properly, P4 VMs record the execution logs of P4 programs in
the shared memory with user VMs. Clouds’ virtual switches
could avoid executing users’ P4 programs by performing
packet forwarding without passing packets to P4 VMs. To
detect such attacks, user VMs periodically obtain the execution
logs stored in the shared memory and compare them with the
statistics of packet transmission and reception. If the execution
logs do not match the statistics, it is possible that P4 programs
are not executed properly. Since clouds could tamper with the
execution logs in the shared memory, P4 VMs store the MAC
computed from the execution logs in the shared memory. Then,
user VMs compare them with the re-computed ones to detect
tampering.

IV. IMPLEMENTATION

We have implemented P4 Shield using Open vSwitch
(OVS) 3.2.1 [8], the Data Plane Development Kit (DPDK)
22.11.7 [14], the uBPF runtime [7], and confidential VMs with
AMD SEV running on KVM.

A. Extension of OVS

P4 Shield extends the datapath of OVS to send packet
data to P4 VMs and receive the execution results of P4
programs from them. The datapath is the forwarding plane
that processes and forwards network packets. OVS provides
several datapaths such as the userspace datapath, the kernel
datapath, and the DPDK datapath. We have implemented P4
Shield in the userspace datapath and the DPDK datapath. This
paper focuses on the implementation in the DPDK datapath
because the userspace datapath is less efficient. DPDK enables
OVS to bypass the OS kernel and process packets only in
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Fig. 4. The extended DPDK datapath in OVS.

userspace, as depicted in Fig. 4. It can reduce the overhead
of interrupts and system calls and achieve efficient packet
processing. In DPDK, a poll mode driver (PMD) occupies a
necessary number of CPU cores and polls the transmit (TX)
and receive (RX) queues of physical and virtual NICs.

When OVS receives a packet from a physical or virtual NIC
using a PMD thread, it copies the first 64 bytes of the packet
to the shared memory established with a P4 VM. OVS finds an
appropriate P4 VM according to the source or destination IP
address of the packet. Since OVS can receive up to 32 packets
in batches, it passes all the packet data to P4 VMs at once.
Then, it waits for the P4 VMs to return the execution results
of P4 programs by polling the shared memory using a PMD
thread. Finally, it re-creates a new batch of packets according
to the received decisions and forwards it.

B. Extension of the uBPF Runtime

P4 Shield extends the uBPF runtime running in P4 VMs to
execute P4 programs using in-VM information in coordination
with OVS. It loads uBPF bytecode generated from a P4
program into the uBPF runtime in advance. After initialization,
the uBPF runtime polls the shared memory between OVS and
the P4 VM and waits until OVS stores packet data in the
shared memory. When receiving packet data, it executes the
uBPF bytecode with the packet data. The packet data in the
shared memory is directly passed to the bytecode without data
copies. After finishing the execution, the uBPF runtime stores
the results in the shared memory to return them to OVS.

The uBPF runtime provides a new helper function named
read_vm_info() to the uBPF bytecode. This helper function
accesses in-VM information stored in the shared memory
established between a P4 VM and a user VM. Since in-
VM information is encrypted with AES-GCM by a user VM,
the helper function decrypts it and verifies the authentication
tag. The helper function takes an offset from the top of the
shared memory as an argument and returns the value stored
in that memory region. The uBPF runtime identifies the user
VM to be accessed by the source or destination IP address
of the packet header passed from OVS. P4 Shield defines
which in-VM information is stored in each offset of the shared
memory. The uBPF runtime assigns a unique number to each
helper function and registers the mapping between the number
and the function pointer. When uBPF bytecode executes the

extern bit<64> get_tcp_mem();

control pipe(inout Headers_t hdr, ..
bit<64> tcp_mem;
bit<32> threshold;
bit<32> used_bytes;

DA

apply {
if (hdr.ipv4.protocol == IP_PROTO_TCP &&

(hdr.tcp.flags & TCP_SYN_MASK) != 0 &&
(hdr.tcp.flags & TCP_ACK_MASK) == 0) {

tcp_mem = get_tcp_mem();

threshold = tcp_mem[63:32];

used_bytes = tcp_mem[31:0];

if (threshold < used_bytes)
mark_to_drop();

Fig. 5. An example of a P4 program using an external function.

call instruction by specifying the number as an operand,
instead of a target address, the uBPF runtime searches for
the corresponding function pointer and invokes the helper
function.

C. P4 External Functions for In-VM Information

P4 Shield provides external functions dedicated to P4
programs to obtain in-VM information stored in the shared
memory. In P4, an external function can be used to execute a
program defined outside a P4 program, e.g., a program written
in the C language. It is declared with the extern keyword
and is invoked like normal functions written in P4. It takes
arguments if necessary and returns some value. Each P4 ex-
ternal function invokes the helper function, read_vm_info(),
provided by the uBPF runtime to access the shared memory.
It specifies the offset corresponding to the necessary in-VM
information for the helper function.

Fig. 5 shows an example of a P4 program using an ex-
ternal function named get_tcp_mem(). After the P4 program
analyzes a packet header in the parser block, it executes the
control block named pipe. The control block takes the data
structure of a parsed packet header as an argument. Then,
the P4 program first checks whether the packet is for a TCP
connection request. Specifically, it checks whether the protocol
is TCP in the IPv4 header and whether the control flag includes
SYN but not ACK in the TCP header. If so, the P4 program
executes get_tcp_mem() and obtains information on TCP
memory in a user VM as a 64-bit value. From the obtained
value, it extracts the upper 32 bits as the threshold and the
lower 32 bits as the amount of used TCP memory. If the
amount of used TCP memory exceeds the threshold, the P4
program executes mark_to_drop() and directs the packet to
be discarded.

P4 Shield compiles a P4 external function written in C into
uBPF bytecode using the C compiler, clang. The generated
bytecode is linked to the uBPF bytecode that a P4 program



is compiled into. To compile a P4 program, P4 Shield first
translates it to a C program using the uBPF-targeted compiler
named p4c-ubpf, which is included in the P4 reference com-
piler named p4c [15]. We extended this compiler to generate
the definition of the function pointer for the helper function
added to the uBPF runtime. The value of this function pointer
is set to the number assigned to the helper function, instead of
the address of a function in C. Next, it compiles the obtained
C program into uBPF bytecode. The invocation of the helper
function is compiled into the call instruction with the value
of the function pointer as its operand.

D. Shared Memory for Confidential VMs and OVS

P4 Shield uses two types of shared memory. One is between
OVS and a P4 VM, and the other is between a P4 VM and a
user VM. To create a shared memory object, P4 Shield runs
the ivshmem server [16] on the host. This server is provided
by QEMU, which is a device emulator for VMs. Then, P4
Shield configures VMs to provide a virtual PCI device for
accessing shared memory. To enable access to the virtual PCI
device in the userspace of VMs, it loads the ivshmem-uio
driver [17] into the Linux kernel and provides the userspace
I/0 (UIO) device.

OVS maps the shared memory object onto its process
address space. It writes packet data to the shared memory and
reads the execution results of P4 programs from the shared
memory. In a P4 VM, the uBPF runtime maps the UIO device
for accessing the same shared memory onto its process address
space. At this time, the ivshmem-uio driver clears the C-
bit of the page table entries for that memory region so that
the shared memory is not encrypted. In addition, the uBPF
runtime maps another UIO device for accessing the shared
memory established with a user VM. It reads information
stored by the user VM from that shared memory. In the user
VM, a userspace tool maps the UIO device for accessing that
shared memory. It writes information needed by P4 programs
to the shared memory. Also, the Linux kernel remaps the
memory region of the virtual PCI device for accessing the
shared memory onto its address space. Using this remapped
memory region, the kernel also writes in-VM information.

V. EXPERIMENTS

We conducted several experiments to show the effectiveness
of P4 Shield. We first confirmed that P4 Shield could perform
advanced packet filtering using in-VM information. In addi-
tion, we measured the communication performance of a user
VM to investigate the overhead introduced by P4 Shield. We
used two servers shown in Table I and connected them to a
10 Gigabit Ethernet switch. In each server, we ran a P4 VM
and a user VM.

A. Advanced Packet Filtering

For advanced packet filtering in a virtual switch, we used
a P4 program that discarded new packets for TCP connection
requests when available TCP memory was expected to run
out in the target user VM. We explained part of this P4

TABLE I
THE EXPERIMENTAL ENVIRONMENTS.
Host 1 Host 2

CPU Intel Core i7-12700 AMD EPYC 7713P
memory 64 GB 256 GB
NIC Intel X540-AT2 Broadcom 57416
0S Linux 6.8
hypervisor QEMU-KVM 6.2.0

P4 VM user VM P4 VM  user VM
virtual CPU 6 4 20 12
memory 4 GB 1 GB 32 GB 32 GB
guest OS Linux 5.15 Linux 6.8

program in Section IV-C. In the user VM, the Linux kernel
manages the amount of used TCP memory and configures
three thresholds: low, pressure, and high. It does not limit
memory allocation for TCP while the amount of used TCP
memory is less than the low threshold. If it becomes larger than
the pressure threshold, the kernel starts to suppress memory
consumption for TCP. When the used TCP memory exceeds
the high threshold, TCP packets are discarded. Unlike this
default policy in Linux, the used P4 program denies only new
TCP connections when the used TCP memory exceeds the
custom threshold.

In the user VM, a userspace tool periodically stored infor-
mation on TCP memory in the shared memory established with
a P4 VM. Specifically, it read data from /proc/net/sockstat
and wrote a custom threshold and the value of used_bytes to
the shared memory. A remote client continuously sent SYN
packets to a server running in the user VM via the virtual
switch and requested new TCP connections. The results show
that the client could connect to the server while the used TCP
memory was less than the threshold. When the amount of
used TCP memory exceeded the threshold, only the requests
of new TCP connections were rejected by the virtual switch,
while existing TCP connections were maintained.

B. Communication Performance

We measured the latency and throughput of TCP and UDP
communications in P4 Shield using netperf 2.7.0 [18]. The
netperf client in a remote host sent packets to the netperf
server in the user VM. We used the P4 program described
in Section V-A, but we slightly modified it because netperf
establishes only one TCP connection for the measurement.
The modified P4 program obtained in-VM information for all
the packets, not only for SYN packets in TCP. To prevent any
packets from being discarded, the user VM stored a sufficiently
large threshold as in-VM information. For comparison, we
used traditional OVS without P4 support. In this experiment,
we used Host 1.

Fig. 6 shows the 90th percentile latency when we specified
a message size of one byte to the client. Compared with
traditional OVS, the latency increased by 23% in TCP and
15% in UDP. This is the overhead of passing a packet to
the P4 VM, executing the P4 program, and obtaining in-VM
information. Fig. 7 shows the throughput of TCP and UDP
communications when we increased the message size up to
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Fig. 7. The throughput of TCP and UDP communications in P4 Shield.

about 64 KB. The throughput degradation was only 5% in
TCP and 4% in UDP on average. This relatively small effect on
throughput degradation can be attributed to parallel processing
in the virtual switch, which hid the overhead of the P4 switch.

Next, we examined the impact of the execution of the
P4 program on communication performance. For comparison,
we did not load the P4 program in the P4 VM. Instead of
the execution results of the P4 program, the P4 VM always
returned a decision of forwarding to the virtual switch. Fig. 8
shows that the execution of the P4 program increased the
latency by 7% in TCP. However, the latency in UDP was
not affected by the P4 program. Similarly, the throughput was
almost the same, as shown in Fig. 9.

Finally, we investigated the breakdown of the execution
time of the P4 program. Fig. 10 shows the medians of each
processing time. P4 processing, other than the execution of
the external function, accounts for 68% of the total time. The
decryption of in-VM information performed in the external
function accounts for 27%. However, the total execution time
was only 421 ns and much smaller than the increase in latency.
This means that the communication overhead between OVS
and the P4 VM dominates the overhead of P4 Shield.

C. Communication Performance with Confidential VMs

We measured the latency and throughput of TCP and UDP
communications when we ran the P4 VM and the user VM
as confidential VMs with AMD SEV. In this experiment, we
used Host 2. As shown in Fig. 11 (left), the latency increased
by 46% in TCP and 53% in UDP. These increases were much
larger than the results in Host 1. To examine whether this was
caused by the overhead of confidential VMs, we measured the
latency when we ran the P4 VM as a normal VM. Since the
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Fig. 9. The impact of P4 processing on the throughput.

latency did not decrease, as in Fig. 11 (right), the overhead
of using a confidential VM for the P4 VM was negligible.
We also ran the user VM as a normal VM, but it showed
negligible differences in latency. This means that the overhead
of P4 Shield comes from the other differences between Host
1 and Host 2.

Fig. 12 shows the throughput, indicating that even tradi-
tional OVS did not achieve satisfactory performance. Even
when the client increased the message size, the throughput
failed to approach 10 Gbps. For TCP, the throughput of
traditional OVS was 4% higher than that of P4 Shield on
average, but that of P4 Shield was higher in many message
sizes. For UDP, the throughput of P4 Shield was almost always
higher. The throughput steeply decreased when the message
size became larger. These trends were similar when we ran
the P4 VM and the user VM as normal VMs. From these
results, we conclude that Host 2 could not achieve sufficient
performance using OVS for some reasons.

D. Security Analysis

Clouds could attempt attacks to eavesdrop on and tamper
with users’ P4 programs or in-VM information obtained by
the P4 programs. In P4 Shield, P4 programs are isolated in
P4 VMs, whose memory and registers are protected by the
TEE. This prevents clouds from breaching the confidentiality
and integrity of users’ P4 programs and user VMs. Note that
the TEE cannot protect the shared memory used for passing
information from user VMs to P4 VMs. To guarantee the con-
fidentiality of that communication, information is encrypted
in user VMs and decrypted in P4 VMs by themselves in P4
Shield. The integrity is verified using the MAC.
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Users could attempt attacks against virtual P4 switches
by loading malicious P4 programs if vulnerabilities exist in
the P4 runtime running in virtual switches. They could also
execute P4 programs that consume a large amount of resources
in virtual switches to cause delays in packet forwarding.
In P4 Shield, users’ P4 programs are confined to P4 VMs
and isolated from virtual switches. Therefore, the abnormal
behavior of the P4 programs cannot affect virtual switches. In
addition, P4 Shield prohibits illegal access and infinite loops
using the load-time verifier of the uBPF runtime running P4
programs.

Clouds could easily disable users’ P4 programs by not
executing them in virtual switches. As a result, they could
forward packets to be discarded to user VMs or discard
packets to be forwarded. In P4 Shield, P4 VMs record the
execution logs of P4 programs to detect this attack. Then,
user VMs can detect the possibility that P4 programs are not
properly executed by comparing the logs with the statistics
of packet transmission and reception. P4 Shield protects the
shared memory used for passing the logs from P4 VMs to user
VMs by encryption and the MAC.

VI. RELATED WORK

P4rt-OVS [2] is a virtual P4 switch based on Open vSwitch.
P4 programs are executed in the virtual switch whenever a
packet arrives. They are also compiled into uBPF bytecode
using p4c-ubpf. Unlike P4 Shield, the uBPF runtime is em-
bedded into the virtual P4 switch. uBPF protects the virtual
switch from the abnormal behavior of P4 programs to some
degree. However, the virtual switch itself is compromised if
the uBPF runtime contains vulnerabilities. In addition, P4rt-
OVS assumes that administrators load P4 programs into the
virtual switch. It does not allow P4 programs to be loaded by
users or to use information inside users’ VMs.
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Fig. 12. The throughput in P4 Shield with confidential VMs.

SGX-Box [19] enables the secure monitoring of encrypted
traffic inside middleboxes using Intel SGX, which is one of
the trusted execution environments (TEEs). Unlike AMD SEV,
SGX enables applications to create protected memory regions
called enclaves. SGX-Box securely decrypts packets using
session keys maintained inside an SGX enclave and executes
in-network functions. To handle encrypted traffic, SGX-Box
provides a high-level programming language called SB lang.
SB lang hides the details of the analysis of the TLS handshake,
packet reconstruction, decryption, and re-encryption from de-
velopers. It is similar to the P4 language and assumes that
network administrators load programs written in SB lang into
the SGX enclave.

EndBox [20] enables the secure execution of middlebox
functions, e.g., firewalls and intrusion detection, on the client
side. It uses Intel SGX to protect middlebox functions. An
EndBox client running on the client side maintains a key for
encrypted communication inside an SGX enclave. Then, it
connects to an EndBox server in the organization or provider
that the client belongs to using a virtual private network
(VPN). Since client applications cannot communicate without
going through the EndBox server, the use of EndBox is
enforced.

Several proposals exist for fine-grained packet filtering
using information inside VMs. VMwall [9] runs in the man-
agement VM of Xen and analyzes the memory of user VMs
using VM introspection [10]. Then, it searches for the process
that transmits or receives a packet from the port number
included in the packet header. If the process name is not
in the whitelist, VMwall discards the packet. xFilter [21] is
similar to VMwall, but its critical component runs in the
hypervisor for efficiency. xFilter obtains information using VM
introspection and dynamically generates filtering rules. The in-
VM information used in these systems can also be used by P4
programs in P4 Shield.

VII. CONCLUSION

This paper proposed P4 Shield for enabling the secure
execution of users’ P4 programs using in-VM information
in P4 VMs. In P4 Shield, virtual switches pass received
packets to P4 VMs to execute P4 programs and perform
packet forwarding according to their execution results. P4
Shield protects users’ P4 programs from clouds by running P4



VMs as confidential VMs and protects clouds’ virtual switches
by confining users’ P4 programs in uBPF sandboxes created
in P4 VMs. After user VMs store the necessary information
in shared memory, P4 programs obtain it using P4 external
functions via the uBPF helper function. We have implemented
P4 Shield on Open vSwitch and confirmed its usefulness and
communication performance.

One of our future work is the improvement of commu-
nication performance in the server equipped with an AMD
EPYC processor, which supports confidential VMs. Since
the performance was much higher in the PC with an Intel
Core processor, we need to find performance bottlenecks in
that server. Additionally, it is necessary to investigate which
information should be made available to P4 programs and what
APIs should be provided.
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